File size: 7,847 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import numpy as np
import torch
from torch import nn
from nnunet.utilities.nd_softmax import softmax_helper
from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2


# taken from https://github.com/JunMa11/SegLoss/blob/master/test/nnUNetV2/loss_functions/focal_loss.py
class FocalLoss(nn.Module):
    """
    copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
    This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
    'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
        Focal_Loss= -1*alpha*(1-pt)*log(pt)
    :param num_class:
    :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
    :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
                    focus on hard misclassified example
    :param smooth: (float,double) smooth value when cross entropy
    :param balance_index: (int) balance class index, should be specific when alpha is float
    :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
    """

    def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
        super(FocalLoss, self).__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average

        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError('smooth value should be in [0,1]')

    def forward(self, logit, target):
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        num_class = logit.shape[1]

        if logit.dim() > 2:
            # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
            logit = logit.view(logit.size(0), logit.size(1), -1)
            logit = logit.permute(0, 2, 1).contiguous()
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        target = target.view(-1, 1)
        # print(logit.shape, target.shape)
        #
        alpha = self.alpha

        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha

        else:
            raise TypeError('Not support alpha type')

        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)

        idx = target.cpu().long()

        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)

        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()

        gamma = self.gamma

        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

        if self.size_average:
            loss = loss.mean()
        else:
            loss = loss.sum()
        return loss


# taken from https://github.com/JunMa11/SegLoss/blob/master/test/nnUNetV2/loss_functions/focal_loss.py
class FocalLossV2(nn.Module):
    """
    copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
    This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
    'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
        Focal_Loss= -1*alpha*(1-pt)*log(pt)
    :param num_class:
    :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
    :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
                    focus on hard misclassified example
    :param smooth: (float,double) smooth value when cross entropy
    :param balance_index: (int) balance class index, should be specific when alpha is float
    :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
    """

    def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
        super(FocalLossV2, self).__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average

        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError('smooth value should be in [0,1]')

    def forward(self, logit, target):
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        num_class = logit.shape[1]

        if logit.dim() > 2:
            # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
            logit = logit.view(logit.size(0), logit.size(1), -1)
            logit = logit.permute(0, 2, 1).contiguous()
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        target = target.view(-1, 1)
        # print(logit.shape, target.shape)
        #
        alpha = self.alpha

        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha

        else:
            raise TypeError('Not support alpha type')

        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)

        idx = target.cpu().long()

        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)

        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()

        gamma = self.gamma

        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

        if self.size_average:
            loss = loss.mean()
        else:
            loss = loss.sum()
        return loss