File size: 34,052 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import numpy as np
from multiprocessing import Pool
from batchgenerators.dataloading.data_loader import SlimDataLoaderBase
from nnunet.configuration import default_num_threads
from nnunet.paths import preprocessing_output_dir
from batchgenerators.utilities.file_and_folder_operations import *
def get_case_identifiers(folder):
case_identifiers = [i[:-4] for i in os.listdir(folder) if i.endswith("npz") and (i.find("segFromPrevStage") == -1)]
return case_identifiers
def get_case_identifiers_from_raw_folder(folder):
case_identifiers = np.unique(
[i[:-12] for i in os.listdir(folder) if i.endswith(".nii.gz") and (i.find("segFromPrevStage") == -1)])
return case_identifiers
def convert_to_npy(args):
if not isinstance(args, tuple):
key = "data"
npz_file = args
else:
npz_file, key = args
if not isfile(npz_file[:-3] + "npy"):
a = np.load(npz_file)[key]
np.save(npz_file[:-3] + "npy", a)
def save_as_npz(args):
if not isinstance(args, tuple):
key = "data"
npy_file = args
else:
npy_file, key = args
d = np.load(npy_file)
np.savez_compressed(npy_file[:-3] + "npz", **{key: d})
def unpack_dataset(folder, threads=default_num_threads, key="data"):
"""
unpacks all npz files in a folder to npy (whatever you want to have unpacked must be saved unter key)
:param folder:
:param threads:
:param key:
:return:
"""
p = Pool(threads)
npz_files = subfiles(folder, True, None, ".npz", True)
p.map(convert_to_npy, zip(npz_files, [key] * len(npz_files)))
p.close()
p.join()
def pack_dataset(folder, threads=default_num_threads, key="data"):
p = Pool(threads)
npy_files = subfiles(folder, True, None, ".npy", True)
p.map(save_as_npz, zip(npy_files, [key] * len(npy_files)))
p.close()
p.join()
def delete_npy(folder):
case_identifiers = get_case_identifiers(folder)
npy_files = [join(folder, i + ".npy") for i in case_identifiers]
npy_files = [i for i in npy_files if isfile(i)]
for n in npy_files:
os.remove(n)
def load_dataset(folder, num_cases_properties_loading_threshold=1000):
# we don't load the actual data but instead return the filename to the np file.
print('loading dataset')
case_identifiers = get_case_identifiers(folder)
case_identifiers.sort()
dataset = OrderedDict()
for c in case_identifiers:
dataset[c] = OrderedDict()
dataset[c]['data_file'] = join(folder, "%s.npz" % c)
# dataset[c]['properties'] = load_pickle(join(folder, "%s.pkl" % c))
dataset[c]['properties_file'] = join(folder, "%s.pkl" % c)
if dataset[c].get('seg_from_prev_stage_file') is not None:
dataset[c]['seg_from_prev_stage_file'] = join(folder, "%s_segs.npz" % c)
if len(case_identifiers) <= num_cases_properties_loading_threshold:
print('loading all case properties')
for i in dataset.keys():
dataset[i]['properties'] = load_pickle(dataset[i]['properties_file'])
return dataset
def crop_2D_image_force_fg(img, crop_size, valid_voxels):
"""
img must be [c, x, y]
img[-1] must be the segmentation with segmentation>0 being foreground
:param img:
:param crop_size:
:param valid_voxels: voxels belonging to the selected class
:return:
"""
assert len(valid_voxels.shape) == 2
if type(crop_size) not in (tuple, list):
crop_size = [crop_size] * (len(img.shape) - 1)
else:
assert len(crop_size) == (len(
img.shape) - 1), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)"
# we need to find the center coords that we can crop to without exceeding the image border
lb_x = crop_size[0] // 2
ub_x = img.shape[1] - crop_size[0] // 2 - crop_size[0] % 2
lb_y = crop_size[1] // 2
ub_y = img.shape[2] - crop_size[1] // 2 - crop_size[1] % 2
if len(valid_voxels) == 0:
selected_center_voxel = (np.random.random_integers(lb_x, ub_x),
np.random.random_integers(lb_y, ub_y))
else:
selected_center_voxel = valid_voxels[np.random.choice(valid_voxels.shape[1]), :]
selected_center_voxel = np.array(selected_center_voxel)
for i in range(2):
selected_center_voxel[i] = max(crop_size[i] // 2, selected_center_voxel[i])
selected_center_voxel[i] = min(img.shape[i + 1] - crop_size[i] // 2 - crop_size[i] % 2,
selected_center_voxel[i])
result = img[:, (selected_center_voxel[0] - crop_size[0] // 2):(
selected_center_voxel[0] + crop_size[0] // 2 + crop_size[0] % 2),
(selected_center_voxel[1] - crop_size[1] // 2):(
selected_center_voxel[1] + crop_size[1] // 2 + crop_size[1] % 2)]
return result
class DataLoader3D(SlimDataLoaderBase):
def __init__(self, data, patch_size, final_patch_size, batch_size, has_prev_stage=False,
oversample_foreground_percent=0.0, memmap_mode="r", pad_mode="edge", pad_kwargs_data=None,
pad_sides=None):
"""
This is the basic data loader for 3D networks. It uses preprocessed data as produced by my (Fabian) preprocessing.
You can load the data with load_dataset(folder) where folder is the folder where the npz files are located. If there
are only npz files present in that folder, the data loader will unpack them on the fly. This may take a while
and increase CPU usage. Therefore, I advise you to call unpack_dataset(folder) first, which will unpack all npz
to npy. Don't forget to call delete_npy(folder) after you are done with training?
Why all the hassle? Well the decathlon dataset is huge. Using npy for everything will consume >1 TB and that is uncool
given that I (Fabian) will have to store that permanently on /datasets and my local computer. With this strategy all
data is stored in a compressed format (factor 10 smaller) and only unpacked when needed.
:param data: get this with load_dataset(folder, stage=0). Plug the return value in here and you are g2g (good to go)
:param patch_size: what patch size will this data loader return? it is common practice to first load larger
patches so that a central crop after data augmentation can be done to reduce border artifacts. If unsure, use
get_patch_size() from data_augmentation.default_data_augmentation
:param final_patch_size: what will the patch finally be cropped to (after data augmentation)? this is the patch
size that goes into your network. We need this here because we will pad patients in here so that patches at the
border of patients are sampled properly
:param batch_size:
:param num_batches: how many batches will the data loader produce before stopping? None=endless
:param seed:
:param stage: ignore this (Fabian only)
:param random: Sample keys randomly; CAREFUL! non-random sampling requires batch_size=1, otherwise you will iterate batch_size times over the dataset
:param oversample_foreground: half the batch will be forced to contain at least some foreground (equal prob for each of the foreground classes)
"""
super(DataLoader3D, self).__init__(data, batch_size, None)
if pad_kwargs_data is None:
pad_kwargs_data = OrderedDict()
self.pad_kwargs_data = pad_kwargs_data
self.pad_mode = pad_mode
self.oversample_foreground_percent = oversample_foreground_percent
self.final_patch_size = final_patch_size
self.has_prev_stage = has_prev_stage
self.patch_size = patch_size
self.list_of_keys = list(self._data.keys())
# need_to_pad denotes by how much we need to pad the data so that if we sample a patch of size final_patch_size
# (which is what the network will get) these patches will also cover the border of the patients
self.need_to_pad = (np.array(patch_size) - np.array(final_patch_size)).astype(int)
if pad_sides is not None:
if not isinstance(pad_sides, np.ndarray):
pad_sides = np.array(pad_sides)
self.need_to_pad += pad_sides
self.memmap_mode = memmap_mode
self.num_channels = None
self.pad_sides = pad_sides
self.data_shape, self.seg_shape = self.determine_shapes()
def get_do_oversample(self, batch_idx):
return not batch_idx < round(self.batch_size * (1 - self.oversample_foreground_percent))
def determine_shapes(self):
if self.has_prev_stage:
num_seg = 3
else:
num_seg = 1
k = list(self._data.keys())[0]
if isfile(self._data[k]['data_file'][:-4] + ".npy"):
case_all_data = np.load(self._data[k]['data_file'][:-4] + ".npy", self.memmap_mode)
else:
case_all_data = np.load(self._data[k]['data_file'])['data']
num_color_channels = case_all_data.shape[0] - 1
data_shape = (self.batch_size, num_color_channels, *self.patch_size)
seg_shape = (self.batch_size, num_seg, *self.patch_size)
return data_shape, seg_shape
def generate_train_batch(self):
selected_keys = np.random.choice(self.list_of_keys, self.batch_size, True, None)
data = np.zeros(self.data_shape, dtype=np.float32)
seg = np.zeros(self.seg_shape, dtype=np.float32)
case_properties = []
for j, i in enumerate(selected_keys):
# oversampling foreground will improve stability of model training, especially if many patches are empty
# (Lung for example)
if self.get_do_oversample(j):
force_fg = True
else:
force_fg = False
if 'properties' in self._data[i].keys():
properties = self._data[i]['properties']
else:
properties = load_pickle(self._data[i]['properties_file'])
case_properties.append(properties)
# cases are stored as npz, but we require unpack_dataset to be run. This will decompress them into npy
# which is much faster to access
if isfile(self._data[i]['data_file'][:-4] + ".npy"):
case_all_data = np.load(self._data[i]['data_file'][:-4] + ".npy", self.memmap_mode)
else:
case_all_data = np.load(self._data[i]['data_file'])['data']
# If we are doing the cascade then we will also need to load the segmentation of the previous stage and
# concatenate it. Here it will be concatenates to the segmentation because the augmentations need to be
# applied to it in segmentation mode. Later in the data augmentation we move it from the segmentations to
# the last channel of the data
if self.has_prev_stage:
if isfile(self._data[i]['seg_from_prev_stage_file'][:-4] + ".npy"):
segs_from_previous_stage = np.load(self._data[i]['seg_from_prev_stage_file'][:-4] + ".npy",
mmap_mode=self.memmap_mode)[None]
else:
segs_from_previous_stage = np.load(self._data[i]['seg_from_prev_stage_file'])['data'][None]
# we theoretically support several possible previsous segmentations from which only one is sampled. But
# in practice this feature was never used so it's always only one segmentation
seg_key = np.random.choice(segs_from_previous_stage.shape[0])
seg_from_previous_stage = segs_from_previous_stage[seg_key:seg_key + 1]
assert all([i == j for i, j in zip(seg_from_previous_stage.shape[1:], case_all_data.shape[1:])]), \
"seg_from_previous_stage does not match the shape of case_all_data: %s vs %s" % \
(str(seg_from_previous_stage.shape[1:]), str(case_all_data.shape[1:]))
else:
seg_from_previous_stage = None
# do you trust me? You better do. Otherwise you'll have to go through this mess and honestly there are
# better things you could do right now
# (above) documentation of the day. Nice. Even myself coming back 1 months later I have not friggin idea
# what's going on. I keep the above documentation just for fun but attempt to make things clearer now
need_to_pad = self.need_to_pad.copy()
for d in range(3):
# if case_all_data.shape + need_to_pad is still < patch size we need to pad more! We pad on both sides
# always
if need_to_pad[d] + case_all_data.shape[d + 1] < self.patch_size[d]:
need_to_pad[d] = self.patch_size[d] - case_all_data.shape[d + 1]
# we can now choose the bbox from -need_to_pad // 2 to shape - patch_size + need_to_pad // 2. Here we
# define what the upper and lower bound can be to then sample form them with np.random.randint
shape = case_all_data.shape[1:]
lb_x = - need_to_pad[0] // 2
ub_x = shape[0] + need_to_pad[0] // 2 + need_to_pad[0] % 2 - self.patch_size[0]
lb_y = - need_to_pad[1] // 2
ub_y = shape[1] + need_to_pad[1] // 2 + need_to_pad[1] % 2 - self.patch_size[1]
lb_z = - need_to_pad[2] // 2
ub_z = shape[2] + need_to_pad[2] // 2 + need_to_pad[2] % 2 - self.patch_size[2]
# if not force_fg then we can just sample the bbox randomly from lb and ub. Else we need to make sure we get
# at least one of the foreground classes in the patch
if not force_fg:
bbox_x_lb = np.random.randint(lb_x, ub_x + 1)
bbox_y_lb = np.random.randint(lb_y, ub_y + 1)
bbox_z_lb = np.random.randint(lb_z, ub_z + 1)
else:
# these values should have been precomputed
if 'class_locations' not in properties.keys():
raise RuntimeError("Please rerun the preprocessing with the newest version of nnU-Net!")
# this saves us a np.unique. Preprocessing already did that for all cases. Neat.
foreground_classes = np.array(
[i for i in properties['class_locations'].keys() if len(properties['class_locations'][i]) != 0])
foreground_classes = foreground_classes[foreground_classes > 0]
if len(foreground_classes) == 0:
# this only happens if some image does not contain foreground voxels at all
selected_class = None
voxels_of_that_class = None
print('case does not contain any foreground classes', i)
else:
selected_class = np.random.choice(foreground_classes)
voxels_of_that_class = properties['class_locations'][selected_class]
if voxels_of_that_class is not None:
selected_voxel = voxels_of_that_class[np.random.choice(len(voxels_of_that_class))]
# selected voxel is center voxel. Subtract half the patch size to get lower bbox voxel.
# Make sure it is within the bounds of lb and ub
bbox_x_lb = max(lb_x, selected_voxel[0] - self.patch_size[0] // 2)
bbox_y_lb = max(lb_y, selected_voxel[1] - self.patch_size[1] // 2)
bbox_z_lb = max(lb_z, selected_voxel[2] - self.patch_size[2] // 2)
else:
# If the image does not contain any foreground classes, we fall back to random cropping
bbox_x_lb = np.random.randint(lb_x, ub_x + 1)
bbox_y_lb = np.random.randint(lb_y, ub_y + 1)
bbox_z_lb = np.random.randint(lb_z, ub_z + 1)
bbox_x_ub = bbox_x_lb + self.patch_size[0]
bbox_y_ub = bbox_y_lb + self.patch_size[1]
bbox_z_ub = bbox_z_lb + self.patch_size[2]
# whoever wrote this knew what he was doing (hint: it was me). We first crop the data to the region of the
# bbox that actually lies within the data. This will result in a smaller array which is then faster to pad.
# valid_bbox is just the coord that lied within the data cube. It will be padded to match the patch size
# later
valid_bbox_x_lb = max(0, bbox_x_lb)
valid_bbox_x_ub = min(shape[0], bbox_x_ub)
valid_bbox_y_lb = max(0, bbox_y_lb)
valid_bbox_y_ub = min(shape[1], bbox_y_ub)
valid_bbox_z_lb = max(0, bbox_z_lb)
valid_bbox_z_ub = min(shape[2], bbox_z_ub)
# At this point you might ask yourself why we would treat seg differently from seg_from_previous_stage.
# Why not just concatenate them here and forget about the if statements? Well that's because segneeds to
# be padded with -1 constant whereas seg_from_previous_stage needs to be padded with 0s (we could also
# remove label -1 in the data augmentation but this way it is less error prone)
case_all_data = np.copy(case_all_data[:, valid_bbox_x_lb:valid_bbox_x_ub,
valid_bbox_y_lb:valid_bbox_y_ub,
valid_bbox_z_lb:valid_bbox_z_ub])
if seg_from_previous_stage is not None:
seg_from_previous_stage = seg_from_previous_stage[:, valid_bbox_x_lb:valid_bbox_x_ub,
valid_bbox_y_lb:valid_bbox_y_ub,
valid_bbox_z_lb:valid_bbox_z_ub]
data[j] = np.pad(case_all_data[:-1], ((0, 0),
(-min(0, bbox_x_lb), max(bbox_x_ub - shape[0], 0)),
(-min(0, bbox_y_lb), max(bbox_y_ub - shape[1], 0)),
(-min(0, bbox_z_lb), max(bbox_z_ub - shape[2], 0))),
self.pad_mode, **self.pad_kwargs_data)
seg[j, 0] = np.pad(case_all_data[-1:], ((0, 0),
(-min(0, bbox_x_lb), max(bbox_x_ub - shape[0], 0)),
(-min(0, bbox_y_lb), max(bbox_y_ub - shape[1], 0)),
(-min(0, bbox_z_lb), max(bbox_z_ub - shape[2], 0))),
'constant', **{'constant_values': -1})
if seg_from_previous_stage is not None:
seg[j, 1] = np.pad(seg_from_previous_stage, ((0, 0),
(-min(0, bbox_x_lb),
max(bbox_x_ub - shape[0], 0)),
(-min(0, bbox_y_lb),
max(bbox_y_ub - shape[1], 0)),
(-min(0, bbox_z_lb),
max(bbox_z_ub - shape[2], 0))),
'constant', **{'constant_values': 0})
return {'data': data, 'seg': seg, 'properties': case_properties, 'keys': selected_keys}
class DataLoader2D(SlimDataLoaderBase):
def __init__(self, data, patch_size, final_patch_size, batch_size, oversample_foreground_percent=0.0,
memmap_mode="r", pseudo_3d_slices=1, pad_mode="edge",
pad_kwargs_data=None, pad_sides=None):
"""
This is the basic data loader for 2D networks. It uses preprocessed data as produced by my (Fabian) preprocessing.
You can load the data with load_dataset(folder) where folder is the folder where the npz files are located. If there
are only npz files present in that folder, the data loader will unpack them on the fly. This may take a while
and increase CPU usage. Therefore, I advise you to call unpack_dataset(folder) first, which will unpack all npz
to npy. Don't forget to call delete_npy(folder) after you are done with training?
Why all the hassle? Well the decathlon dataset is huge. Using npy for everything will consume >1 TB and that is uncool
given that I (Fabian) will have to store that permanently on /datasets and my local computer. With htis strategy all
data is stored in a compressed format (factor 10 smaller) and only unpacked when needed.
:param data: get this with load_dataset(folder, stage=0). Plug the return value in here and you are g2g (good to go)
:param patch_size: what patch size will this data loader return? it is common practice to first load larger
patches so that a central crop after data augmentation can be done to reduce border artifacts. If unsure, use
get_patch_size() from data_augmentation.default_data_augmentation
:param final_patch_size: what will the patch finally be cropped to (after data augmentation)? this is the patch
size that goes into your network. We need this here because we will pad patients in here so that patches at the
border of patients are sampled properly
:param batch_size:
:param num_batches: how many batches will the data loader produce before stopping? None=endless
:param seed:
:param stage: ignore this (Fabian only)
:param transpose: ignore this
:param random: sample randomly; CAREFUL! non-random sampling requires batch_size=1, otherwise you will iterate batch_size times over the dataset
:param pseudo_3d_slices: 7 = 3 below and 3 above the center slice
"""
super(DataLoader2D, self).__init__(data, batch_size, None)
if pad_kwargs_data is None:
pad_kwargs_data = OrderedDict()
self.pad_kwargs_data = pad_kwargs_data
self.pad_mode = pad_mode
self.pseudo_3d_slices = pseudo_3d_slices
self.oversample_foreground_percent = oversample_foreground_percent
self.final_patch_size = final_patch_size
self.patch_size = patch_size
self.list_of_keys = list(self._data.keys())
self.need_to_pad = np.array(patch_size) - np.array(final_patch_size)
self.memmap_mode = memmap_mode
if pad_sides is not None:
if not isinstance(pad_sides, np.ndarray):
pad_sides = np.array(pad_sides)
self.need_to_pad += pad_sides
self.pad_sides = pad_sides
self.data_shape, self.seg_shape = self.determine_shapes()
def determine_shapes(self):
# TODO make this dynamic (Done)
num_color_channels = 1
k = list(self._data.keys())[0]
if isfile(self._data[k]['data_file'][:-4] + ".npy"):
case_all_data = np.load(self._data[k]['data_file'][:-4] + ".npy", self.memmap_mode)
else:
case_all_data = np.load(self._data[k]['data_file'])['data']
num_seg = case_all_data.shape[0] - num_color_channels
data_shape = (self.batch_size, num_color_channels, *self.patch_size)
seg_shape = (self.batch_size, num_seg, *self.patch_size)
return data_shape, seg_shape
def get_do_oversample(self, batch_idx):
return not batch_idx < round(self.batch_size * (1 - self.oversample_foreground_percent))
def generate_train_batch(self):
selected_keys = np.random.choice(self.list_of_keys, self.batch_size, True, None)
data = np.zeros(self.data_shape, dtype=np.float32)
seg = np.zeros(self.seg_shape, dtype=np.float32)
case_properties = []
for j, i in enumerate(selected_keys):
if 'properties' in self._data[i].keys():
properties = self._data[i]['properties']
else:
properties = load_pickle(self._data[i]['properties_file'])
case_properties.append(properties)
if self.get_do_oversample(j):
force_fg = True
else:
force_fg = False
if not isfile(self._data[i]['data_file'][:-4] + ".npy"):
# lets hope you know what you're doing
case_all_data = np.load(self._data[i]['data_file'][:-4] + ".npz")['data']
else:
case_all_data = np.load(self._data[i]['data_file'][:-4] + ".npy", self.memmap_mode)
# this is for when there is just a 2d slice in case_all_data (2d support)
if len(case_all_data.shape) == 3:
case_all_data = case_all_data[:, None]
# first select a slice. This can be either random (no force fg) or guaranteed to contain some class
if not force_fg:
random_slice = np.random.choice(case_all_data.shape[1])
selected_class = None
else:
# these values should have been precomputed
if 'class_locations' not in properties.keys():
raise RuntimeError("Please rerun the preprocessing with the newest version of nnU-Net!")
foreground_classeses = []
for label in properties['class_locations'].keys():
foreground_classes = np.array(
[i for i in properties['class_locations'][label].keys() if len(properties['class_locations'][label][i]) != 0])
foreground_classes = foreground_classes[foreground_classes > 0]
foreground_classeses.append(foreground_classes)
if len(foreground_classeses) == 0:
selected_class = None
random_slice = np.random.choice(case_all_data.shape[1])
print('case does not contain any foreground classes', i)
else:
selected_label = np.random.choice(len(properties['class_locations']))
selected_class = np.random.choice(foreground_classeses[selected_label])
voxels_of_that_class = properties['class_locations'][selected_label][selected_class]
valid_slices = np.unique(voxels_of_that_class[:, 0])
random_slice = np.random.choice(valid_slices)
voxels_of_that_class = voxels_of_that_class[voxels_of_that_class[:, 0] == random_slice]
voxels_of_that_class = voxels_of_that_class[:, 1:]
# now crop case_all_data to contain just the slice of interest. If we want additional slice above and
# below the current slice, here is where we get them. We stack those as additional color channels
if self.pseudo_3d_slices == 1:
case_all_data = case_all_data[:, random_slice]
else:
# this is very deprecated and will probably not work anymore. If you intend to use this you need to
# check this!
mn = random_slice - (self.pseudo_3d_slices - 1) // 2
mx = random_slice + (self.pseudo_3d_slices - 1) // 2 + 1
valid_mn = max(mn, 0)
valid_mx = min(mx, case_all_data.shape[1])
case_all_seg = case_all_data[-1:]
case_all_data = case_all_data[:-1]
case_all_data = case_all_data[:, valid_mn:valid_mx]
case_all_seg = case_all_seg[:, random_slice]
need_to_pad_below = valid_mn - mn
need_to_pad_above = mx - valid_mx
if need_to_pad_below > 0:
shp_for_pad = np.array(case_all_data.shape)
shp_for_pad[1] = need_to_pad_below
case_all_data = np.concatenate((np.zeros(shp_for_pad), case_all_data), 1)
if need_to_pad_above > 0:
shp_for_pad = np.array(case_all_data.shape)
shp_for_pad[1] = need_to_pad_above
case_all_data = np.concatenate((case_all_data, np.zeros(shp_for_pad)), 1)
case_all_data = case_all_data.reshape((-1, case_all_data.shape[-2], case_all_data.shape[-1]))
case_all_data = np.concatenate((case_all_data, case_all_seg), 0)
# case all data should now be (c, x, y)
assert len(case_all_data.shape) == 3
# we can now choose the bbox from -need_to_pad // 2 to shape - patch_size + need_to_pad // 2. Here we
# define what the upper and lower bound can be to then sample form them with np.random.randint
need_to_pad = self.need_to_pad.copy()
for d in range(2):
# if case_all_data.shape + need_to_pad is still < patch size we need to pad more! We pad on both sides
# always
if need_to_pad[d] + case_all_data.shape[d + 1] < self.patch_size[d]:
need_to_pad[d] = self.patch_size[d] - case_all_data.shape[d + 1]
shape = case_all_data.shape[1:]
lb_x = - need_to_pad[0] // 2
ub_x = shape[0] + need_to_pad[0] // 2 + need_to_pad[0] % 2 - self.patch_size[0]
lb_y = - need_to_pad[1] // 2
ub_y = shape[1] + need_to_pad[1] // 2 + need_to_pad[1] % 2 - self.patch_size[1]
# if not force_fg then we can just sample the bbox randomly from lb and ub. Else we need to make sure we get
# at least one of the foreground classes in the patch
if not force_fg or selected_class is None:
bbox_x_lb = np.random.randint(lb_x, ub_x + 1)
bbox_y_lb = np.random.randint(lb_y, ub_y + 1)
else:
# this saves us a np.unique. Preprocessing already did that for all cases. Neat.
selected_voxel = voxels_of_that_class[np.random.choice(len(voxels_of_that_class))]
# selected voxel is center voxel. Subtract half the patch size to get lower bbox voxel.
# Make sure it is within the bounds of lb and ub
bbox_x_lb = max(lb_x, selected_voxel[0] - self.patch_size[0] // 2)
bbox_y_lb = max(lb_y, selected_voxel[1] - self.patch_size[1] // 2)
bbox_x_ub = bbox_x_lb + self.patch_size[0]
bbox_y_ub = bbox_y_lb + self.patch_size[1]
# whoever wrote this knew what he was doing (hint: it was me). We first crop the data to the region of the
# bbox that actually lies within the data. This will result in a smaller array which is then faster to pad.
# valid_bbox is just the coord that lied within the data cube. It will be padded to match the patch size
# later
valid_bbox_x_lb = max(0, bbox_x_lb)
valid_bbox_x_ub = min(shape[0], bbox_x_ub)
valid_bbox_y_lb = max(0, bbox_y_lb)
valid_bbox_y_ub = min(shape[1], bbox_y_ub)
# At this point you might ask yourself why we would treat seg differently from seg_from_previous_stage.
# Why not just concatenate them here and forget about the if statements? Well that's because segneeds to
# be padded with -1 constant whereas seg_from_previous_stage needs to be padded with 0s (we could also
# remove label -1 in the data augmentation but this way it is less error prone)
case_all_data = case_all_data[:, valid_bbox_x_lb:valid_bbox_x_ub,
valid_bbox_y_lb:valid_bbox_y_ub]
case_all_data_donly = np.pad(case_all_data[:1], ((0, 0),
(-min(0, bbox_x_lb), max(bbox_x_ub - shape[0], 0)),
(-min(0, bbox_y_lb), max(bbox_y_ub - shape[1], 0))),
self.pad_mode, **self.pad_kwargs_data)
case_all_data_segonly = np.pad(case_all_data[1:], ((0, 0),
(-min(0, bbox_x_lb), max(bbox_x_ub - shape[0], 0)),
(-min(0, bbox_y_lb), max(bbox_y_ub - shape[1], 0))),
'constant', **{'constant_values': -1})
data[j] = case_all_data_donly
seg[j] = case_all_data_segonly
keys = selected_keys
return {'data': data, 'seg': seg, 'properties': case_properties, "keys": keys}
if __name__ == "__main__":
t = "Task002_Heart"
p = join(preprocessing_output_dir, t, "stage1")
dataset = load_dataset(p)
with open(join(join(preprocessing_output_dir, t), "plans_stage1.pkl"), 'rb') as f:
plans = pickle.load(f)
unpack_dataset(p)
dl = DataLoader3D(dataset, (32, 32, 32), (32, 32, 32), 2, oversample_foreground_percent=0.33)
dl = DataLoader3D(dataset, np.array(plans['patch_size']).astype(int), np.array(plans['patch_size']).astype(int), 2,
oversample_foreground_percent=0.33)
dl2d = DataLoader2D(dataset, (64, 64), np.array(plans['patch_size']).astype(int)[1:], 12,
oversample_foreground_percent=0.33)
|