File size: 47,849 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import numpy as np
from batchgenerators.augmentations.utils import pad_nd_image
from nnunet.utilities.random_stuff import no_op
from nnunet.utilities.to_torch import to_cuda, maybe_to_torch
from torch import nn
import torch
from scipy.ndimage.filters import gaussian_filter
from typing import Union, Tuple, List

from torch.cuda.amp import autocast


class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()

    def get_device(self):
        if next(self.parameters()).device.type == "cpu":
            return "cpu"
        else:
            return next(self.parameters()).device.index

    def set_device(self, device):
        if device == "cpu":
            self.cpu()
        else:
            self.cuda(device)

    def forward(self, x):
        raise NotImplementedError


class SegmentationNetwork(NeuralNetwork):
    def __init__(self):
        super(NeuralNetwork, self).__init__()

        # if we have 5 pooling then our patch size must be divisible by 2**5
        self.input_shape_must_be_divisible_by = None  # for example in a 2d network that does 5 pool in x and 6 pool
        # in y this would be (32, 64)

        # we need to know this because we need to know if we are a 2d or a 3d netowrk
        self.conv_op = None  # nn.Conv2d or nn.Conv3d

        # this tells us how many channels we have in the output. Important for preallocation in inference
        self.num_classes = None  # number of channels in the output

        # depending on the loss, we do not hard code a nonlinearity into the architecture. To aggregate predictions
        # during inference, we need to apply the nonlinearity, however. So it is important to let the newtork know what
        # to apply in inference. For the most part this will be softmax
        self.inference_apply_nonlin = lambda x: x  # softmax_helper

        # This is for saving a gaussian importance map for inference. It weights voxels higher that are closer to the
        # center. Prediction at the borders are often less accurate and are thus downweighted. Creating these Gaussians
        # can be expensive, so it makes sense to save and reuse them.
        self._gaussian_3d = self._patch_size_for_gaussian_3d = None
        self._gaussian_2d = self._patch_size_for_gaussian_2d = None

    def predict_3D(self, x: np.ndarray, do_mirroring: bool, mirror_axes: Tuple[int, ...] = (0, 1, 2),
                   use_sliding_window: bool = False,
                   step_size: float = 0.5, patch_size: Tuple[int, ...] = None, regions_class_order: Tuple[int, ...] = None,
                   use_gaussian: bool = False, pad_border_mode: str = "constant",
                   pad_kwargs: dict = None, all_in_gpu: bool = False,
                   verbose: bool = True, mixed_precision: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        """
        Use this function to predict a 3D image. It does not matter whether the network is a 2D or 3D U-Net, it will
        detect that automatically and run the appropriate code.

        When running predictions, you need to specify whether you want to run fully convolutional of sliding window
        based inference. We very strongly recommend you use sliding window with the default settings.

        It is the responsibility of the user to make sure the network is in the proper mode (eval for inference!). If
        the network is not in eval mode it will print a warning.

        :param x: Your input data. Must be a nd.ndarray of shape (c, x, y, z).
        :param do_mirroring: If True, use test time data augmentation in the form of mirroring
        :param mirror_axes: Determines which axes to use for mirroing. Per default, mirroring is done along all three
        axes
        :param use_sliding_window: if True, run sliding window prediction. Heavily recommended! This is also the default
        :param step_size: When running sliding window prediction, the step size determines the distance between adjacent
        predictions. The smaller the step size, the denser the predictions (and the longer it takes!). Step size is given
        as a fraction of the patch_size. 0.5 is the default and means that wen advance by patch_size * 0.5 between
        predictions. step_size cannot be larger than 1!
        :param patch_size: The patch size that was used for training the network. Do not use different patch sizes here,
        this will either crash or give potentially less accurate segmentations
        :param regions_class_order: Fabian only
        :param use_gaussian: (Only applies to sliding window prediction) If True, uses a Gaussian importance weighting
         to weigh predictions closer to the center of the current patch higher than those at the borders. The reason
         behind this is that the segmentation accuracy decreases towards the borders. Default (and recommended): True
        :param pad_border_mode: leave this alone
        :param pad_kwargs: leave this alone
        :param all_in_gpu: experimental. You probably want to leave this as is it
        :param verbose: Do you want a wall of text? If yes then set this to True
        :param mixed_precision: if True, will run inference in mixed precision with autocast()
        :return:
        """
        torch.cuda.empty_cache()

        assert step_size <= 1, 'step_size must be smaller than 1. Otherwise there will be a gap between consecutive ' \
                               'predictions'

        if verbose: print("debug: mirroring", do_mirroring, "mirror_axes", mirror_axes)

        if pad_kwargs is None:
            pad_kwargs = {'constant_values': 0}

        # A very long time ago the mirror axes were (2, 3, 4) for a 3d network. This is just to intercept any old
        # code that uses this convention
        if len(mirror_axes):
            if self.conv_op == nn.Conv2d:
                if max(mirror_axes) > 1:
                    raise ValueError("mirror axes. duh")
            if self.conv_op == nn.Conv3d:
                if max(mirror_axes) > 2:
                    raise ValueError("mirror axes. duh")

        if self.training:
            print('WARNING! Network is in train mode during inference. This may be intended, or not...')

        assert len(x.shape) == 4, "data must have shape (c,x,y,z)"

        if mixed_precision:
            context = autocast
        else:
            context = no_op

        with context():
            with torch.no_grad():
                if self.conv_op == nn.Conv3d:
                    if use_sliding_window:
                        res = self._internal_predict_3D_3Dconv_tiled(x, step_size, do_mirroring, mirror_axes, patch_size,
                                                                     regions_class_order, use_gaussian, pad_border_mode,
                                                                     pad_kwargs=pad_kwargs, all_in_gpu=all_in_gpu,
                                                                     verbose=verbose)
                    else:
                        res = self._internal_predict_3D_3Dconv(x, patch_size, do_mirroring, mirror_axes, regions_class_order,
                                                               pad_border_mode, pad_kwargs=pad_kwargs, verbose=verbose)
                elif self.conv_op == nn.Conv2d:
                    if use_sliding_window:
                        # this one
                        res = self._internal_predict_3D_2Dconv_tiled(x, patch_size, do_mirroring, mirror_axes, step_size,
                                                                     regions_class_order, use_gaussian, pad_border_mode,
                                                                     pad_kwargs, all_in_gpu, False)
                    else:
                        res = self._internal_predict_3D_2Dconv(x, patch_size, do_mirroring, mirror_axes, regions_class_order,
                                                               pad_border_mode, pad_kwargs, all_in_gpu, False)
                else:
                    raise RuntimeError("Invalid conv op, cannot determine what dimensionality (2d/3d) the network is")

        return res

    def predict_2D(self, x, do_mirroring: bool, mirror_axes: tuple = (0, 1, 2), use_sliding_window: bool = False,
                   step_size: float = 0.5, patch_size: tuple = None, regions_class_order: tuple = None,
                   use_gaussian: bool = False, pad_border_mode: str = "constant",
                   pad_kwargs: dict = None, all_in_gpu: bool = False,
                   verbose: bool = True, mixed_precision: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        """
        Use this function to predict a 2D image. If this is a 3D U-Net it will crash because you cannot predict a 2D
        image with that (you dummy).

        When running predictions, you need to specify whether you want to run fully convolutional of sliding window
        based inference. We very strongly recommend you use sliding window with the default settings.

        It is the responsibility of the user to make sure the network is in the proper mode (eval for inference!). If
        the network is not in eval mode it will print a warning.

        :param x: Your input data. Must be a nd.ndarray of shape (c, x, y).
        :param do_mirroring: If True, use test time data augmentation in the form of mirroring
        :param mirror_axes: Determines which axes to use for mirroing. Per default, mirroring is done along all three
        axes
        :param use_sliding_window: if True, run sliding window prediction. Heavily recommended! This is also the default
        :param step_size: When running sliding window prediction, the step size determines the distance between adjacent
        predictions. The smaller the step size, the denser the predictions (and the longer it takes!). Step size is given
        as a fraction of the patch_size. 0.5 is the default and means that wen advance by patch_size * 0.5 between
        predictions. step_size cannot be larger than 1!
        :param patch_size: The patch size that was used for training the network. Do not use different patch sizes here,
        this will either crash or give potentially less accurate segmentations
        :param regions_class_order: Fabian only
        :param use_gaussian: (Only applies to sliding window prediction) If True, uses a Gaussian importance weighting
         to weigh predictions closer to the center of the current patch higher than those at the borders. The reason
         behind this is that the segmentation accuracy decreases towards the borders. Default (and recommended): True
        :param pad_border_mode: leave this alone
        :param pad_kwargs: leave this alone
        :param all_in_gpu: experimental. You probably want to leave this as is it
        :param verbose: Do you want a wall of text? If yes then set this to True
        :return:
        """
        torch.cuda.empty_cache()

        assert step_size <= 1, 'step_size must be smaler than 1. Otherwise there will be a gap between consecutive ' \
                               'predictions'

        if self.conv_op == nn.Conv3d:
            raise RuntimeError("Cannot predict 2d if the network is 3d. Dummy.")

        if verbose: print("debug: mirroring", do_mirroring, "mirror_axes", mirror_axes)

        if pad_kwargs is None:
            pad_kwargs = {'constant_values': 0}

        # A very long time ago the mirror axes were (2, 3) for a 2d network. This is just to intercept any old
        # code that uses this convention
        if len(mirror_axes):
            if max(mirror_axes) > 1:
                raise ValueError("mirror axes. duh")

        if self.training:
            print('WARNING! Network is in train mode during inference. This may be intended, or not...')

        assert len(x.shape) == 3, "data must have shape (c,x,y)"

        if mixed_precision:
            context = autocast
        else:
            context = no_op

        with context():
            with torch.no_grad():
                if self.conv_op == nn.Conv2d:
                    if use_sliding_window:
                        res = self._internal_predict_2D_2Dconv_tiled(x, step_size, do_mirroring, mirror_axes, patch_size,
                                                                     regions_class_order, use_gaussian, pad_border_mode,
                                                                     pad_kwargs, all_in_gpu, verbose)
                    else:
                        res = self._internal_predict_2D_2Dconv(x, patch_size, do_mirroring, mirror_axes, regions_class_order,
                                                               pad_border_mode, pad_kwargs, verbose)
                else:
                    raise RuntimeError("Invalid conv op, cannot determine what dimensionality (2d/3d) the network is")

        return res

    @staticmethod
    def _get_gaussian(patch_size, sigma_scale=1. / 8) -> np.ndarray:
        tmp = np.zeros(patch_size)
        center_coords = [i // 2 for i in patch_size]
        sigmas = [i * sigma_scale for i in patch_size]
        tmp[tuple(center_coords)] = 1
        gaussian_importance_map = gaussian_filter(tmp, sigmas, 0, mode='constant', cval=0)
        gaussian_importance_map = gaussian_importance_map / np.max(gaussian_importance_map) * 1
        gaussian_importance_map = gaussian_importance_map.astype(np.float32)

        # gaussian_importance_map cannot be 0, otherwise we may end up with nans!
        gaussian_importance_map[gaussian_importance_map == 0] = np.min(
            gaussian_importance_map[gaussian_importance_map != 0])

        return gaussian_importance_map

    @staticmethod
    def _compute_steps_for_sliding_window(patch_size: Tuple[int, ...], image_size: Tuple[int, ...], step_size: float) -> List[List[int]]:
        assert [i >= j for i, j in zip(image_size, patch_size)], "image size must be as large or larger than patch_size"
        assert 0 < step_size <= 1, 'step_size must be larger than 0 and smaller or equal to 1'

        # our step width is patch_size*step_size at most, but can be narrower. For example if we have image size of
        # 110, patch size of 64 and step_size of 0.5, then we want to make 3 steps starting at coordinate 0, 23, 46
        target_step_sizes_in_voxels = [i * step_size for i in patch_size]

        num_steps = [int(np.ceil((i - k) / j)) + 1 for i, j, k in zip(image_size, target_step_sizes_in_voxels, patch_size)]

        steps = []
        for dim in range(len(patch_size)):
            # the highest step value for this dimension is
            max_step_value = image_size[dim] - patch_size[dim]
            if num_steps[dim] > 1:
                actual_step_size = max_step_value / (num_steps[dim] - 1)
            else:
                actual_step_size = 99999999999  # does not matter because there is only one step at 0

            steps_here = [int(np.round(actual_step_size * i)) for i in range(num_steps[dim])]

            steps.append(steps_here)

        return steps

    def _internal_predict_3D_3Dconv_tiled(self, x: np.ndarray, step_size: float, do_mirroring: bool, mirror_axes: tuple,
                                          patch_size: tuple, regions_class_order: tuple, use_gaussian: bool,
                                          pad_border_mode: str, pad_kwargs: dict, all_in_gpu: bool,
                                          verbose: bool) -> Tuple[np.ndarray, np.ndarray]:
        # better safe than sorry
        assert len(x.shape) == 4, "x must be (c, x, y, z)"

        if verbose: print("step_size:", step_size)
        if verbose: print("do mirror:", do_mirroring)

        assert patch_size is not None, "patch_size cannot be None for tiled prediction"

        # for sliding window inference the image must at least be as large as the patch size. It does not matter
        # whether the shape is divisible by 2**num_pool as long as the patch size is
        data, slicer = pad_nd_image(x, patch_size, pad_border_mode, pad_kwargs, True, None)
        data_shape = data.shape  # still c, x, y, z

        # compute the steps for sliding window
        steps = self._compute_steps_for_sliding_window(patch_size, data_shape[1:], step_size)
        num_tiles = len(steps[0]) * len(steps[1]) * len(steps[2])

        if verbose:
            print("data shape:", data_shape)
            print("patch size:", patch_size)
            print("steps (x, y, and z):", steps)
            print("number of tiles:", num_tiles)

        # we only need to compute that once. It can take a while to compute this due to the large sigma in
        # gaussian_filter
        if use_gaussian and num_tiles > 1:
            if self._gaussian_3d is None or not all(
                    [i == j for i, j in zip(patch_size, self._patch_size_for_gaussian_3d)]):
                if verbose: print('computing Gaussian')
                gaussian_importance_map = self._get_gaussian(patch_size, sigma_scale=1. / 8)

                self._gaussian_3d = gaussian_importance_map
                self._patch_size_for_gaussian_3d = patch_size
            else:
                if verbose: print("using precomputed Gaussian")
                gaussian_importance_map = self._gaussian_3d

            gaussian_importance_map = torch.from_numpy(gaussian_importance_map)

            #predict on cpu if cuda not available
            if torch.cuda.is_available():
                gaussian_importance_map = gaussian_importance_map.cuda(self.get_device(), non_blocking=True)

        else:
            gaussian_importance_map = None

        if all_in_gpu:
            # If we run the inference in GPU only (meaning all tensors are allocated on the GPU, this reduces
            # CPU-GPU communication but required more GPU memory) we need to preallocate a few things on GPU

            if use_gaussian and num_tiles > 1:
                # half precision for the outputs should be good enough. If the outputs here are half, the
                # gaussian_importance_map should be as well
                gaussian_importance_map = gaussian_importance_map.half()

                # make sure we did not round anything to 0
                gaussian_importance_map[gaussian_importance_map == 0] = gaussian_importance_map[
                    gaussian_importance_map != 0].min()

                add_for_nb_of_preds = gaussian_importance_map
            else:
                add_for_nb_of_preds = torch.ones(patch_size, device=self.get_device())

            if verbose: print("initializing result array (on GPU)")
            aggregated_results = torch.zeros([self.num_classes] + list(data.shape[1:]), dtype=torch.half,
                                             device=self.get_device())

            if verbose: print("moving data to GPU")
            data = torch.from_numpy(data).cuda(self.get_device(), non_blocking=True)
            
            if verbose: print("initializing result_numsamples (on GPU)")
            aggregated_nb_of_predictions = torch.zeros([self.num_classes] + list(data.shape[1:]), dtype=torch.half,
                                                       device=self.get_device())
            
        else:
            if use_gaussian and num_tiles > 1:
                add_for_nb_of_preds = self._gaussian_3d
            else:
                add_for_nb_of_preds = np.ones(patch_size, dtype=np.float32)
            aggregated_results = np.zeros([self.num_classes] + list(data.shape[1:]), dtype=np.float32)
            aggregated_nb_of_predictions = np.zeros([self.num_classes] + list(data.shape[1:]), dtype=np.float32)

        for x in steps[0]:
            lb_x = x
            ub_x = x + patch_size[0]
            for y in steps[1]:
                lb_y = y
                ub_y = y + patch_size[1]
                for z in steps[2]:
                    lb_z = z
                    ub_z = z + patch_size[2]

                    predicted_patch = self._internal_maybe_mirror_and_pred_3D(
                        data[None, :, lb_x:ub_x, lb_y:ub_y, lb_z:ub_z], mirror_axes, do_mirroring,
                        gaussian_importance_map)[0]

                    if all_in_gpu:
                        predicted_patch = predicted_patch.half()
                    else:
                        predicted_patch = predicted_patch.cpu().numpy()

                    aggregated_results[:, lb_x:ub_x, lb_y:ub_y, lb_z:ub_z] += predicted_patch
                    aggregated_nb_of_predictions[:, lb_x:ub_x, lb_y:ub_y, lb_z:ub_z] += add_for_nb_of_preds

        # we reverse the padding here (remeber that we padded the input to be at least as large as the patch size
        slicer = tuple(
            [slice(0, aggregated_results.shape[i]) for i in
             range(len(aggregated_results.shape) - (len(slicer) - 1))] + slicer[1:])
        aggregated_results = aggregated_results[slicer]
        aggregated_nb_of_predictions = aggregated_nb_of_predictions[slicer]

        # computing the class_probabilities by dividing the aggregated result with result_numsamples
        class_probabilities = aggregated_results / aggregated_nb_of_predictions

        if regions_class_order is None:
            predicted_segmentation = class_probabilities.argmax(0)
        else:
            if all_in_gpu:
                class_probabilities_here = class_probabilities.detach().cpu().numpy()
            else:
                class_probabilities_here = class_probabilities
            predicted_segmentation = np.zeros(class_probabilities_here.shape[1:], dtype=np.float32)
            for i, c in enumerate(regions_class_order):
                predicted_segmentation[class_probabilities_here[i] > 0.5] = c

        if all_in_gpu:
            if verbose: print("copying results to CPU")

            if regions_class_order is None:
                predicted_segmentation = predicted_segmentation.detach().cpu().numpy()

            class_probabilities = class_probabilities.detach().cpu().numpy()

        if verbose: print("prediction done")
        return predicted_segmentation, class_probabilities

    def _internal_predict_2D_2Dconv(self, x: np.ndarray, min_size: Tuple[int, int], do_mirroring: bool,
                                    mirror_axes: tuple = (0, 1, 2), regions_class_order: tuple = None,
                                    pad_border_mode: str = "constant", pad_kwargs: dict = None,
                                    verbose: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        """
        This one does fully convolutional inference. No sliding window
        """
        assert len(x.shape) == 3, "x must be (c, x, y)"

        assert self.input_shape_must_be_divisible_by is not None, 'input_shape_must_be_divisible_by must be set to ' \
                                                                  'run _internal_predict_2D_2Dconv'
        if verbose: print("do mirror:", do_mirroring)

        data, slicer = pad_nd_image(x, min_size, pad_border_mode, pad_kwargs, True,
                                    self.input_shape_must_be_divisible_by)

        predicted_probabilities = self._internal_maybe_mirror_and_pred_2D(data[None], mirror_axes, do_mirroring,
                                                                          None)[0]

        slicer = tuple(
            [slice(0, predicted_probabilities.shape[i]) for i in range(len(predicted_probabilities.shape) -
                                                                       (len(slicer) - 1))] + slicer[1:])
        predicted_probabilities = predicted_probabilities[slicer]

        if regions_class_order is None:
            predicted_segmentation = predicted_probabilities.argmax(0)
            predicted_segmentation = predicted_segmentation.detach().cpu().numpy()
            predicted_probabilities = predicted_probabilities.detach().cpu().numpy()
        else:
            predicted_probabilities = predicted_probabilities.detach().cpu().numpy()
            predicted_segmentation = np.zeros(predicted_probabilities.shape[1:], dtype=np.float32)
            for i, c in enumerate(regions_class_order):
                predicted_segmentation[predicted_probabilities[i] > 0.5] = c

        return predicted_segmentation, predicted_probabilities

    def _internal_predict_3D_3Dconv(self, x: np.ndarray, min_size: Tuple[int, ...], do_mirroring: bool,
                                    mirror_axes: tuple = (0, 1, 2), regions_class_order: tuple = None,
                                    pad_border_mode: str = "constant", pad_kwargs: dict = None,
                                    verbose: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        """
        This one does fully convolutional inference. No sliding window
        """
        assert len(x.shape) == 4, "x must be (c, x, y, z)"

        assert self.input_shape_must_be_divisible_by is not None, 'input_shape_must_be_divisible_by must be set to ' \
                                                                  'run _internal_predict_3D_3Dconv'
        if verbose: print("do mirror:", do_mirroring)

        data, slicer = pad_nd_image(x, min_size, pad_border_mode, pad_kwargs, True,
                                    self.input_shape_must_be_divisible_by)

        predicted_probabilities = self._internal_maybe_mirror_and_pred_3D(data[None], mirror_axes, do_mirroring,
                                                                          None)[0]

        slicer = tuple(
            [slice(0, predicted_probabilities.shape[i]) for i in range(len(predicted_probabilities.shape) -
                                                                       (len(slicer) - 1))] + slicer[1:])
        predicted_probabilities = predicted_probabilities[slicer]

        if regions_class_order is None:
            predicted_segmentation = predicted_probabilities.argmax(0)
            predicted_segmentation = predicted_segmentation.detach().cpu().numpy()
            predicted_probabilities = predicted_probabilities.detach().cpu().numpy()
        else:
            predicted_probabilities = predicted_probabilities.detach().cpu().numpy()
            predicted_segmentation = np.zeros(predicted_probabilities.shape[1:], dtype=np.float32)
            for i, c in enumerate(regions_class_order):
                predicted_segmentation[predicted_probabilities[i] > 0.5] = c

        return predicted_segmentation, predicted_probabilities

    def _internal_maybe_mirror_and_pred_3D(self, x: Union[np.ndarray, torch.tensor], mirror_axes: tuple,
                                           do_mirroring: bool = True,
                                           mult: np.ndarray or torch.tensor = None) -> torch.tensor:
        assert len(x.shape) == 5, 'x must be (b, c, x, y, z)'

        # if cuda available:
        #   everything in here takes place on the GPU. If x and mult are not yet on GPU this will be taken care of here
        #   we now return a cuda tensor! Not numpy array!

        x = maybe_to_torch(x)
        result_torch = torch.zeros([1, self.num_classes] + list(x.shape[2:]),
                                   dtype=torch.float)

        if torch.cuda.is_available():
            x = to_cuda(x, gpu_id=self.get_device())
            result_torch = result_torch.cuda(self.get_device(), non_blocking=True)

        if mult is not None:
            mult = maybe_to_torch(mult)
            if torch.cuda.is_available():
                mult = to_cuda(mult, gpu_id=self.get_device())

        if do_mirroring:
            mirror_idx = 8
            num_results = 2 ** len(mirror_axes)
        else:
            mirror_idx = 1
            num_results = 1

        for m in range(mirror_idx):
            if m == 0:
                pred = self.inference_apply_nonlin(self(x))
                result_torch += 1 / num_results * pred

            if m == 1 and (2 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (4, ))))
                result_torch += 1 / num_results * torch.flip(pred, (4,))

            if m == 2 and (1 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (3, ))))
                result_torch += 1 / num_results * torch.flip(pred, (3,))

            if m == 3 and (2 in mirror_axes) and (1 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (4, 3))))
                result_torch += 1 / num_results * torch.flip(pred, (4, 3))

            if m == 4 and (0 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (2, ))))
                result_torch += 1 / num_results * torch.flip(pred, (2,))

            if m == 5 and (0 in mirror_axes) and (2 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (4, 2))))
                result_torch += 1 / num_results * torch.flip(pred, (4, 2))

            if m == 6 and (0 in mirror_axes) and (1 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (3, 2))))
                result_torch += 1 / num_results * torch.flip(pred, (3, 2))

            if m == 7 and (0 in mirror_axes) and (1 in mirror_axes) and (2 in mirror_axes):
                pred = self.inference_apply_nonlin(self(torch.flip(x, (4, 3, 2))))
                result_torch += 1 / num_results * torch.flip(pred, (4, 3, 2))

        if mult is not None:
            result_torch[:, :] *= mult

        return result_torch

    def _internal_maybe_mirror_and_pred_2D(self, x: Union[np.ndarray, torch.tensor], mirror_axes: tuple,
                                           do_mirroring: bool = True,
                                           mult: np.ndarray or torch.tensor = None) -> torch.tensor:
        # if cuda available:
        #   everything in here takes place on the GPU. If x and mult are not yet on GPU this will be taken care of here
        #   we now return a cuda tensor! Not numpy array!
        
        assert len(x.shape) == 4, 'x must be (b, c, x, y)'

        x = maybe_to_torch(x)
        results_torch = []
        for num_class in self.num_classes:
            results_torch.append(torch.zeros([x.shape[0], num_class] + list(x.shape[2:]), dtype=torch.float))

        if torch.cuda.is_available():
            x = to_cuda(x, gpu_id=self.get_device())
            for i, result_torch in enumerate(results_torch):
                results_torch[i] = result_torch.cuda(self.get_device(), non_blocking=True)

        if mult is not None:
            mult = maybe_to_torch(mult)
            if torch.cuda.is_available():
                mult = to_cuda(mult, gpu_id=self.get_device())

        if do_mirroring:
            mirror_idx = 4
            num_results = 2 ** len(mirror_axes)
        else:
            mirror_idx = 1
            num_results = 1

        for m in range(mirror_idx):
            # TODO apply second label (Done)
            if m == 0:
                predictions = []
                counter = 0
                for num_class in self.num_classes:
                    if num_class > 1:
                        predictions.append(self.inference_apply_nonlin(self(x)[:,counter:num_class+counter]))
                        counter += num_class
                    else:
                        # for reconstruction task
                        predictions.append(self(x)[:,counter:counter+1])
                        counter += 1

                for i, pred in enumerate(predictions):
                    results_torch[i] += 1 / num_results * pred


            if m == 1 and (1 in mirror_axes):
                predictions = []
                counter = 0
                for num_class in self.num_classes:
                    if num_class > 1:
                        predictions.append(self.inference_apply_nonlin(self(torch.flip(x, (3, )))[:, counter:num_class + counter]))
                        counter += num_class
                    else:
                        # for reconstruction task
                        predictions.append(self(torch.flip(x, (3, )))[:, counter:counter + 1])
                        counter += 1

                for i, pred in enumerate(predictions):
                    results_torch[i] += 1 / num_results * torch.flip(pred, (3,))

            if m == 2 and (0 in mirror_axes):
                predictions = []
                counter = 0
                for num_class in self.num_classes:
                    if num_class > 1:
                        predictions.append(
                            self.inference_apply_nonlin(self(torch.flip(x, (2,)))[:, counter:num_class + counter]))
                        counter += num_class
                    else:
                        # for reconstruction task
                        predictions.append(self(torch.flip(x, (2,)))[:, counter:counter + 1])
                        counter += 1

                for i, pred in enumerate(predictions):
                    results_torch[i] += 1 / num_results * torch.flip(pred,(2,))


            if m == 3 and (0 in mirror_axes) and (1 in mirror_axes):
                predictions = []
                counter = 0
                for num_class in self.num_classes:
                    if num_class > 1:
                        predictions.append(
                            self.inference_apply_nonlin(self(torch.flip(x, (3,2)))[:, counter:num_class + counter]))
                        counter += num_class
                    else:
                        # for reconstruction task
                        predictions.append(self(torch.flip(x, (3,2)))[:, counter:counter + 1])
                        counter += 1

                for i, pred in enumerate(predictions):
                    results_torch[i] += 1 / num_results * torch.flip(pred, (3,2))

        if mult is not None:
            for i, result in enumerate(results_torch):
                results_torch[i][:, :] = result * mult

        return results_torch

    def _internal_predict_2D_2Dconv_tiled(self, x: np.ndarray, step_size: float, do_mirroring: bool, mirror_axes: tuple,
                                          patch_size: tuple, regions_class_order: tuple, use_gaussian: bool,
                                          pad_border_mode: str, pad_kwargs: dict, all_in_gpu: bool,
                                          verbose: bool) -> Tuple[np.ndarray, np.ndarray]:
        # better safe than sorry
        assert len(x.shape) == 3, "x must be (c, x, y)"
        if not isinstance(self.num_classes, list):
            self.num_classes = [self.num_classes] # for standard nnUNet with one label

        if verbose: print("step_size:", step_size)
        if verbose: print("do mirror:", do_mirroring)

        assert patch_size is not None, "patch_size cannot be None for tiled prediction"

        # for sliding window inference the image must at least be as large as the patch size. It does not matter
        # whether the shape is divisible by 2**num_pool as long as the patch size is
        data, slicer = pad_nd_image(x, patch_size, pad_border_mode, pad_kwargs, True, None)
        data_shape = data.shape  # still c, x, y

        # compute the steps for sliding window
        steps = self._compute_steps_for_sliding_window(patch_size, data_shape[1:], step_size)
        num_tiles = len(steps[0]) * len(steps[1])

        if verbose:
            print("data shape:", data_shape)
            print("patch size:", patch_size)
            print("steps (x, y, and z):", steps)
            print("number of tiles:", num_tiles)

        # we only need to compute that once. It can take a while to compute this due to the large sigma in
        # gaussian_filter
        if use_gaussian and num_tiles > 1:
            if self._gaussian_2d is None or not all(
                    [i == j for i, j in zip(patch_size, self._patch_size_for_gaussian_2d)]):
                if verbose: print('computing Gaussian')
                gaussian_importance_map = self._get_gaussian(patch_size, sigma_scale=1. / 8)

                self._gaussian_2d = gaussian_importance_map
                self._patch_size_for_gaussian_2d = patch_size
            else:
                if verbose: print("using precomputed Gaussian")
                gaussian_importance_map = self._gaussian_2d

            gaussian_importance_map = torch.from_numpy(gaussian_importance_map)
            if torch.cuda.is_available():
                gaussian_importance_map = gaussian_importance_map.cuda(self.get_device(), non_blocking=True)

        else:
            gaussian_importance_map = None

        if all_in_gpu:
            # If we run the inference in GPU only (meaning all tensors are allocated on the GPU, this reduces
            # CPU-GPU communication but required more GPU memory) we need to preallocate a few things on GPU

            if use_gaussian and num_tiles > 1:
                # half precision for the outputs should be good enough. If the outputs here are half, the
                # gaussian_importance_map should be as well
                gaussian_importance_map = gaussian_importance_map.half()

                # make sure we did not round anything to 0
                gaussian_importance_map[gaussian_importance_map == 0] = gaussian_importance_map[
                    gaussian_importance_map != 0].min()

                add_for_nb_of_preds = gaussian_importance_map
            else:
                add_for_nb_of_preds = torch.ones(patch_size, device=self.get_device())

            if verbose: print("initializing result array (on GPU)")
            aggregated_results = torch.zeros(self.num_classes + list(data.shape[1:]), dtype=torch.half,
                                             device=self.get_device())

            if verbose: print("moving data to GPU")
            data = torch.from_numpy(data).cuda(self.get_device(), non_blocking=True)

            if verbose: print("initializing result_numsamples (on GPU)")
            aggregated_nb_of_predictions = torch.zeros(self.num_classes + list(data.shape[1:]), dtype=torch.half,
                                                       device=self.get_device())
        else:
            if use_gaussian and num_tiles > 1:
                add_for_nb_of_preds = self._gaussian_2d

            else:
                add_for_nb_of_preds = np.ones(patch_size, dtype=np.float32)

            aggregated_results = []
            for i, class_label in enumerate(self.num_classes):
                aggregated_results.append(np.zeros([class_label] + list(data.shape[1:]), dtype=np.float32))

            aggregated_nb_of_predictions = []
            for i, class_label in enumerate(self.num_classes):
                aggregated_nb_of_predictions.append(np.zeros([class_label] + list(data.shape[1:]), dtype=np.float32))


        for x in steps[0]:
            lb_x = x
            ub_x = x + patch_size[0]
            for y in steps[1]:
                lb_y = y
                ub_y = y + patch_size[1]

                predicted_patches = self._internal_maybe_mirror_and_pred_2D(
                    data[None, :, lb_x:ub_x, lb_y:ub_y], mirror_axes, do_mirroring,
                    gaussian_importance_map)

                predicted_patches_here = []
                if all_in_gpu:
                    for predicted_patch in predicted_patches:
                        predicted_patches_here.append(predicted_patch.half())

                else:
                    for predicted_patch in predicted_patches:
                        predicted_patches_here.append(predicted_patch.cpu().numpy())

                for i, predicted_patch in enumerate(predicted_patches_here):
                    aggregated_results[i][:, lb_x:ub_x, lb_y:ub_y] += predicted_patch[0]
                    aggregated_nb_of_predictions[i][:, lb_x:ub_x, lb_y:ub_y] += add_for_nb_of_preds



        # we reverse the padding here (remeber that we padded the input to be at least as large as the patch size
        for i,(agg_result, agg_nb_pred) in enumerate(zip(aggregated_results, aggregated_nb_of_predictions)):
            slicer0 = tuple(
                [slice(0, agg_result.shape[i]) for i in
                 range(len(agg_result.shape) - (len(slicer) - 1))] + slicer[1:])
            aggregated_results[i] = agg_result[slicer0]
            aggregated_nb_of_predictions[i] = agg_nb_pred[slicer0]



        # computing the class_probabilities by dividing the aggregated result with result_numsamples
        class_probabilities = []
        for agg_result, agg_nb_pred in zip(aggregated_results, aggregated_nb_of_predictions):
            class_probabilities.append(agg_result / agg_nb_pred)

        predictions = []
        predicted_segmentations = []
        if regions_class_order is None:

            for class_prob in class_probabilities:
                if len(class_prob) > 1:
                    predictions.append(class_prob.argmax(0))
                else:
                    predictions.append(class_prob)

        else:
            if all_in_gpu:
                for class_prob in class_probabilities:
                    predictions.append(class_prob.detach().cpu().numpy())

            else:
                predictions = class_probabilities


            for pred in predictions:
                predicted_segmentations.append(np.zeros(pred.shape[1:], dtype=np.float32))

            for i,pred in enumerate(predictions):
                for i, c in enumerate(regions_class_order):
                    if len(pred) > 1:
                        predicted_segmentations[i][pred[i] > 0.5] = c
                    else:
                        predicted_segmentations[i] = pred

        if all_in_gpu:
            if verbose: print("copying results to CPU")

            if regions_class_order is None:
                for i,pred_seg in enumerate(predicted_segmentations):
                    predicted_segmentations[i] = pred_seg.detach().cpu().numpy()

            for i, class_prob in enumerate(class_probabilities):
                class_probabilities[i] = class_prob.detach().cpu().numpy()


        if verbose: print("prediction done")

        return predicted_segmentations, class_probabilities

    def _internal_predict_3D_2Dconv(self, x: np.ndarray, min_size: Tuple[int, int], do_mirroring: bool,
                                    mirror_axes: tuple = (0, 1), regions_class_order: tuple = None,
                                    pad_border_mode: str = "constant", pad_kwargs: dict = None,
                                    all_in_gpu: bool = False, verbose: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        if all_in_gpu:
            raise NotImplementedError
        assert len(x.shape) == 4, "data must be c, x, y, z"
        predicted_segmentation = []
        softmax_pred = []
        for s in range(x.shape[1]):
            pred_seg, softmax_pres = self._internal_predict_2D_2Dconv(
                x[:, s], min_size, do_mirroring, mirror_axes, regions_class_order, pad_border_mode, pad_kwargs, verbose)
            predicted_segmentation.append(pred_seg[None])
            softmax_pred.append(softmax_pres[None])
        predicted_segmentation = np.vstack(predicted_segmentation)
        softmax_pred = np.vstack(softmax_pred).transpose((1, 0, 2, 3))
        return predicted_segmentation, softmax_pred

    def predict_3D_pseudo3D_2Dconv(self, x: np.ndarray, min_size: Tuple[int, int], do_mirroring: bool,
                                   mirror_axes: tuple = (0, 1), regions_class_order: tuple = None,
                                   pseudo3D_slices: int = 5, all_in_gpu: bool = False,
                                   pad_border_mode: str = "constant", pad_kwargs: dict = None,
                                   verbose: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        if all_in_gpu:
            raise NotImplementedError
        assert len(x.shape) == 4, "data must be c, x, y, z"
        assert pseudo3D_slices % 2 == 1, "pseudo3D_slices must be odd"
        extra_slices = (pseudo3D_slices - 1) // 2

        shp_for_pad = np.array(x.shape)
        shp_for_pad[1] = extra_slices

        pad = np.zeros(shp_for_pad, dtype=np.float32)
        data = np.concatenate((pad, x, pad), 1)

        predicted_segmentation = []
        softmax_pred = []
        for s in range(extra_slices, data.shape[1] - extra_slices):
            d = data[:, (s - extra_slices):(s + extra_slices + 1)]
            d = d.reshape((-1, d.shape[-2], d.shape[-1]))
            pred_seg, softmax_pres = \
                self._internal_predict_2D_2Dconv(d, min_size, do_mirroring, mirror_axes,
                                                 regions_class_order, pad_border_mode, pad_kwargs, verbose)
            predicted_segmentation.append(pred_seg[None])
            softmax_pred.append(softmax_pres[None])
        predicted_segmentation = np.vstack(predicted_segmentation)
        softmax_pred = np.vstack(softmax_pred).transpose((1, 0, 2, 3))

        return predicted_segmentation, softmax_pred

    def _internal_predict_3D_2Dconv_tiled(self, x: np.ndarray, patch_size: Tuple[int, int], do_mirroring: bool,
                                          mirror_axes: tuple = (0, 1), step_size: float = 0.5,
                                          regions_class_order: tuple = None, use_gaussian: bool = False,
                                          pad_border_mode: str = "edge", pad_kwargs: dict =None,
                                          all_in_gpu: bool = False,
                                          verbose: bool = True) -> Tuple[np.ndarray, np.ndarray]:
        if all_in_gpu:
            raise NotImplementedError

        assert len(x.shape) == 4, "data must be c, x, y, z"

        predicted_segmentation = []
        softmax_pred = []

        for s in range(x.shape[1]):
            pred_seg, softmax_pres = self._internal_predict_2D_2Dconv_tiled(
                x[:, s], step_size, do_mirroring, mirror_axes, patch_size, regions_class_order, use_gaussian,
                pad_border_mode, pad_kwargs, all_in_gpu, verbose)

            predicted_segmentation.append(np.array(pred_seg))
            softmax_pred.append(np.vstack(softmax_pres))

        predicted_segmentation = np.vstack(predicted_segmentation)
        softmax_pred = np.vstack([softmax_pred]).transpose((1, 0, 2, 3))

        return predicted_segmentation, softmax_pred


if __name__ == '__main__':
    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (162, 529, 529), 0.5))
    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (162, 529, 529), 1))
    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (162, 529, 529), 0.1))

    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (60, 448, 224), 1))
    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (60, 448, 224), 0.5))

    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (30, 224, 224), 1))
    print(SegmentationNetwork._compute_steps_for_sliding_window((30, 224, 224), (30, 224, 224), 0.125))


    print(SegmentationNetwork._compute_steps_for_sliding_window((123, 54, 123), (246, 162, 369), 0.25))