File size: 45,575 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from copy import deepcopy
from typing import Tuple, Union, List
import numpy as np
from batchgenerators.augmentations.utils import resize_segmentation
from nnunet.inference.segmentation_export import save_segmentation_nifti_from_softmax, save_segmentation_nifti
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing import Process, Queue
import torch
import SimpleITK as sitk
import shutil
from multiprocessing import Pool
from nnunet.postprocessing.connected_components import load_remove_save, load_postprocessing
from nnunet.training.model_restore import load_model_and_checkpoint_files
from nnunet.training.network_training.nnUNetTrainer import nnUNetTrainer
from nnunet.utilities.one_hot_encoding import to_one_hot
def preprocess_save_to_queue(preprocess_fn, q, list_of_lists, output_files, segs_from_prev_stage, classes,
transpose_forward):
# suppress output
# sys.stdout = open(os.devnull, 'w')
errors_in = []
for i, l in enumerate(list_of_lists):
try:
output_file = output_files[i]
print("preprocessing", output_file)
d, _, dct = preprocess_fn(l)
dct['classes'] = [[0]+ cl for cl in classes]
# print(output_file, dct)
if segs_from_prev_stage[i] is not None:
assert isfile(segs_from_prev_stage[i]) and segs_from_prev_stage[i].endswith(
".nii.gz"), "segs_from_prev_stage" \
" must point to a " \
"segmentation file"
seg_prev = sitk.GetArrayFromImage(sitk.ReadImage(segs_from_prev_stage[i]))
# check to see if shapes match
img = sitk.GetArrayFromImage(sitk.ReadImage(l[0]))
assert all([i == j for i, j in zip(seg_prev.shape, img.shape)]), "image and segmentation from previous " \
"stage don't have the same pixel array " \
"shape! image: %s, seg_prev: %s" % \
(l[0], segs_from_prev_stage[i])
seg_prev = seg_prev.transpose(transpose_forward)
seg_reshaped = resize_segmentation(seg_prev, d.shape[1:], order=1)
seg_reshaped = to_one_hot(seg_reshaped, classes)
d = np.vstack((d, seg_reshaped)).astype(np.float32)
"""There is a problem with python process communication that prevents us from communicating obejcts
larger than 2 GB between processes (basically when the length of the pickle string that will be sent is
communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long
enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually
patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will
then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either
filename or np.ndarray and will handle this automatically"""
print(d.shape)
if np.prod(d.shape) > (2e9 / 4 * 0.85): # *0.85 just to be save, 4 because float32 is 4 bytes
print(
"This output is too large for python process-process communication. "
"Saving output temporarily to disk")
np.save(output_file[:-7] + ".npy", d)
d = output_file[:-7] + ".npy"
q.put((output_file, (d, dct)))
except KeyboardInterrupt:
raise KeyboardInterrupt
except Exception as e:
print("error in", l)
print(e)
q.put("end")
if len(errors_in) > 0:
print("There were some errors in the following cases:", errors_in)
print("These cases were ignored.")
else:
print("This worker has ended successfully, no errors to report")
# restore output
# sys.stdout = sys.__stdout__
def preprocess_multithreaded(trainer, list_of_lists, output_files, num_processes=2, segs_from_prev_stage=None):
if segs_from_prev_stage is None:
segs_from_prev_stage = [None] * len(list_of_lists)
num_processes = min(len(list_of_lists), num_processes)
classes = [list(range(1, num_classes)) for num_classes in trainer.num_classes]
assert isinstance(trainer, nnUNetTrainer)
q = Queue(1)
processes = []
for i in range(num_processes):
"""
pr = preprocess_save_to_queue(trainer.preprocess_patient, q, list_of_lists[i::num_processes],
output_files[i::num_processes],
segs_from_prev_stage[i::num_processes],
classes, trainer.plans['transpose_forward'])
"""
pr = Process(target=preprocess_save_to_queue, args=(trainer.preprocess_patient, q,
list_of_lists[i::num_processes],
output_files[i::num_processes],
segs_from_prev_stage[i::num_processes],
classes, trainer.plans['transpose_forward']))
pr.start()
processes.append(pr)
try:
end_ctr = 0
while end_ctr != num_processes:
item = q.get()
if item == "end":
end_ctr += 1
continue
else:
yield item
finally:
for p in processes:
if p.is_alive():
p.terminate() # this should not happen but better safe than sorry right
p.join()
q.close()
def predict_cases(model, list_of_lists, output_filenames, folds, save_npz, num_threads_preprocessing,
num_threads_nifti_save, segs_from_prev_stage=None, do_tta=True, mixed_precision=True,
overwrite_existing=False,
all_in_gpu=False, step_size=0.5, checkpoint_name="model_final_checkpoint",
segmentation_export_kwargs: dict = None, disable_postprocessing: bool = False):
"""
:param segmentation_export_kwargs:
:param model: folder where the model is saved, must contain fold_x subfolders
:param list_of_lists: [[case0_0000.nii.gz, case0_0001.nii.gz], [case1_0000.nii.gz, case1_0001.nii.gz], ...]
:param output_filenames: [output_file_case0.nii.gz, output_file_case1.nii.gz, ...]
:param folds: default: (0, 1, 2, 3, 4) (but can also be 'all' or a subset of the five folds, for example use (0, )
for using only fold_0
:param save_npz: default: False
:param num_threads_preprocessing:
:param num_threads_nifti_save:
:param segs_from_prev_stage:
:param do_tta: default: True, can be set to False for a 8x speedup at the cost of a reduced segmentation quality
:param overwrite_existing: default: True
:param mixed_precision: if None then we take no action. If True/False we overwrite what the model has in its init
:return:
"""
assert len(list_of_lists) == len(output_filenames)
if segs_from_prev_stage is not None: assert len(segs_from_prev_stage) == len(output_filenames)
pool = Pool(num_threads_nifti_save)
results = []
cleaned_output_files = []
for o in output_filenames:
dr, f = os.path.split(o)
if len(dr) > 0:
maybe_mkdir_p(dr)
if not f.endswith(".nii.gz"):
f, _ = os.path.splitext(f)
f = f + ".nii.gz"
cleaned_output_files.append(join(dr, f))
if not overwrite_existing:
print("number of cases:", len(list_of_lists))
# if save_npz=True then we should also check for missing npz files
not_done_idx = [i for i, j in enumerate(cleaned_output_files) if (not isfile(j)) or (save_npz and not isfile(j[:-7] + '.npz'))]
cleaned_output_files = [cleaned_output_files[i] for i in not_done_idx]
list_of_lists = [list_of_lists[i] for i in not_done_idx]
if segs_from_prev_stage is not None:
segs_from_prev_stage = [segs_from_prev_stage[i] for i in not_done_idx]
print("number of cases that still need to be predicted:", len(cleaned_output_files))
print("emptying cuda cache")
torch.cuda.empty_cache()
print("loading parameters for folds,", folds)
trainer, params = load_model_and_checkpoint_files(model, folds, mixed_precision=mixed_precision,
checkpoint_name=checkpoint_name)
if segmentation_export_kwargs is None:
if 'segmentation_export_params' in trainer.plans.keys():
force_separate_z = trainer.plans['segmentation_export_params']['force_separate_z']
interpolation_order = trainer.plans['segmentation_export_params']['interpolation_order']
interpolation_order_z = trainer.plans['segmentation_export_params']['interpolation_order_z']
else:
force_separate_z = None
interpolation_order = 1
interpolation_order_z = 0
else:
force_separate_z = segmentation_export_kwargs['force_separate_z']
interpolation_order = segmentation_export_kwargs['interpolation_order']
interpolation_order_z = segmentation_export_kwargs['interpolation_order_z']
print("starting preprocessing generator")
preprocessing = preprocess_multithreaded(trainer, list_of_lists, cleaned_output_files, num_threads_preprocessing,
segs_from_prev_stage)
print("starting prediction...")
all_output_files = []
for preprocessed in preprocessing:
output_filename, (d, dct) = preprocessed
all_output_files.append(output_filename)
if isinstance(d, str):
data = np.load(d)
os.remove(d)
d = data
print("predicting", output_filename)
trainer.load_checkpoint_ram(params[0], False)
softmax = trainer.predict_preprocessed_data_return_seg_and_softmax(
d, do_mirroring=do_tta, mirror_axes=trainer.data_aug_params['mirror_axes'], use_sliding_window=True,
step_size=step_size, use_gaussian=True, all_in_gpu=all_in_gpu,
mixed_precision=mixed_precision)[1]
for p in params[1:]:
trainer.load_checkpoint_ram(p, False)
softmax += trainer.predict_preprocessed_data_return_seg_and_softmax(
d, do_mirroring=do_tta, mirror_axes=trainer.data_aug_params['mirror_axes'], use_sliding_window=True,
step_size=step_size, use_gaussian=True, all_in_gpu=all_in_gpu,
mixed_precision=mixed_precision)[1]
if len(params) > 1:
softmax /= len(params)
transpose_forward = trainer.plans.get('transpose_forward')
if transpose_forward is not None:
transpose_backward = trainer.plans.get('transpose_backward')
softmax = softmax.transpose([0] + [i + 1 for i in transpose_backward])
if save_npz:
npz_file = output_filename[:-7] + ".npz"
else:
npz_file = None
if hasattr(trainer, 'regions_class_order'):
region_class_order = trainer.regions_class_order
else:
region_class_order = None
"""There is a problem with python process communication that prevents us from communicating obejcts
larger than 2 GB between processes (basically when the length of the pickle string that will be sent is
communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long
enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually
patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will
then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either
filename or np.ndarray and will handle this automatically"""
bytes_per_voxel = 4
if all_in_gpu:
bytes_per_voxel = 2 # if all_in_gpu then the return value is half (float16)
if np.prod(softmax.shape) > (2e9 / bytes_per_voxel * 0.85): # * 0.85 just to be save
print(
"This output is too large for python process-process communication. Saving output temporarily to disk")
np.save(output_filename[:-7] + ".npy", softmax)
softmax = output_filename[:-7] + ".npy"
"""
save_segmentation_nifti_from_softmax(softmax, output_filename, dct, interpolation_order, region_class_order,
None, None,
npz_file, None, force_separate_z, interpolation_order_z)
"""
results.append(pool.starmap_async(save_segmentation_nifti_from_softmax,
((softmax, output_filename, dct, interpolation_order, region_class_order,
None, None,
npz_file, None, force_separate_z, interpolation_order_z),)
))
print("inference done. Now waiting for the segmentation export to finish...")
_ = [i.get() for i in results]
# now apply postprocessing
# first load the postprocessing properties if they are present. Else raise a well visible warning
if not disable_postprocessing:
results = []
pp_file = join(model, "postprocessing.json")
if isfile(pp_file):
print("postprocessing...")
shutil.copy(pp_file, os.path.abspath(os.path.dirname(output_filenames[0])))
# for_which_classes stores for which of the classes everything but the largest connected component needs to be
# removed
for_which_classes, min_valid_obj_size = load_postprocessing(pp_file)
results.append(pool.starmap_async(load_remove_save,
zip(output_filenames, output_filenames,
[for_which_classes] * len(output_filenames),
[min_valid_obj_size] * len(output_filenames))))
_ = [i.get() for i in results]
else:
print("WARNING! Cannot run postprocessing because the postprocessing file is missing. Make sure to run "
"consolidate_folds in the output folder of the model first!\nThe folder you need to run this in is "
"%s" % model)
pool.close()
pool.join()
def predict_cases_fast(model, list_of_lists, output_filenames, folds, num_threads_preprocessing,
num_threads_nifti_save, segs_from_prev_stage=None, do_tta=True, mixed_precision=True,
overwrite_existing=False,
all_in_gpu=False, step_size=0.5, checkpoint_name="model_final_checkpoint",
segmentation_export_kwargs: dict = None, disable_postprocessing: bool = False):
assert len(list_of_lists) == len(output_filenames)
if segs_from_prev_stage is not None: assert len(segs_from_prev_stage) == len(output_filenames)
pool = Pool(num_threads_nifti_save)
results = []
cleaned_output_files = []
for o in output_filenames:
dr, f = os.path.split(o)
if len(dr) > 0:
maybe_mkdir_p(dr)
if not f.endswith(".nii.gz"):
f, _ = os.path.splitext(f)
f = f + ".nii.gz"
cleaned_output_files.append(join(dr, f))
if not overwrite_existing:
print("number of cases:", len(list_of_lists))
not_done_idx = [i for i, j in enumerate(cleaned_output_files) if not isfile(j)]
cleaned_output_files = [cleaned_output_files[i] for i in not_done_idx]
list_of_lists = [list_of_lists[i] for i in not_done_idx]
if segs_from_prev_stage is not None:
segs_from_prev_stage = [segs_from_prev_stage[i] for i in not_done_idx]
print("number of cases that still need to be predicted:", len(cleaned_output_files))
print("emptying cuda cache")
torch.cuda.empty_cache()
print("loading parameters for folds,", folds)
trainer, params = load_model_and_checkpoint_files(model, folds, mixed_precision=mixed_precision,
checkpoint_name=checkpoint_name)
if segmentation_export_kwargs is None:
if 'segmentation_export_params' in trainer.plans.keys():
force_separate_z = trainer.plans['segmentation_export_params']['force_separate_z']
interpolation_order = trainer.plans['segmentation_export_params']['interpolation_order']
interpolation_order_z = trainer.plans['segmentation_export_params']['interpolation_order_z']
else:
force_separate_z = None
interpolation_order = 1
interpolation_order_z = 0
else:
force_separate_z = segmentation_export_kwargs['force_separate_z']
interpolation_order = segmentation_export_kwargs['interpolation_order']
interpolation_order_z = segmentation_export_kwargs['interpolation_order_z']
print("starting preprocessing generator")
preprocessing = preprocess_multithreaded(trainer, list_of_lists, cleaned_output_files, num_threads_preprocessing,
segs_from_prev_stage)
print("starting prediction...")
for preprocessed in preprocessing:
print("getting data from preprocessor")
output_filename, (d, dct) = preprocessed
print("got something")
if isinstance(d, str):
print("what I got is a string, so I need to load a file")
data = np.load(d)
os.remove(d)
d = data
# preallocate the output arrays
# same dtype as the return value in predict_preprocessed_data_return_seg_and_softmax (saves time)
softmax_aggr = None # np.zeros((trainer.num_classes, *d.shape[1:]), dtype=np.float16)
all_seg_outputs = np.zeros((len(params), *d.shape[1:]), dtype=int)
print("predicting", output_filename)
for i, p in enumerate(params):
trainer.load_checkpoint_ram(p, False)
res = trainer.predict_preprocessed_data_return_seg_and_softmax(d, do_mirroring=do_tta,
mirror_axes=trainer.data_aug_params['mirror_axes'],
use_sliding_window=True,
step_size=step_size, use_gaussian=True,
all_in_gpu=all_in_gpu,
mixed_precision=mixed_precision)
if len(params) > 1:
# otherwise we dont need this and we can save ourselves the time it takes to copy that
print("aggregating softmax")
if softmax_aggr is None:
softmax_aggr = res[1]
else:
softmax_aggr += res[1]
all_seg_outputs[i] = res[0]
print("obtaining segmentation map")
if len(params) > 1:
# we dont need to normalize the softmax by 1 / len(params) because this would not change the outcome of the argmax
seg = softmax_aggr.argmax(0)
else:
seg = all_seg_outputs[0]
print("applying transpose_backward")
transpose_forward = trainer.plans.get('transpose_forward')
if transpose_forward is not None:
transpose_backward = trainer.plans.get('transpose_backward')
seg = seg.transpose([i for i in transpose_backward])
if hasattr(trainer, 'regions_class_order'):
region_class_order = trainer.regions_class_order
else:
region_class_order = None
assert region_class_order is None, "predict_cases_fast can only work with regular softmax predictions " \
"and is therefore unable to handle trainer classes with region_class_order"
print("initializing segmentation export")
results.append(pool.starmap_async(save_segmentation_nifti,
((seg, output_filename, dct, interpolation_order, force_separate_z,
interpolation_order_z),)
))
print("done")
print("inference done. Now waiting for the segmentation export to finish...")
_ = [i.get() for i in results]
# now apply postprocessing
# first load the postprocessing properties if they are present. Else raise a well visible warning
if not disable_postprocessing:
results = []
pp_file = join(model, "postprocessing.json")
if isfile(pp_file):
print("postprocessing...")
shutil.copy(pp_file, os.path.dirname(output_filenames[0]))
# for_which_classes stores for which of the classes everything but the largest connected component needs to be
# removed
for_which_classes, min_valid_obj_size = load_postprocessing(pp_file)
results.append(pool.starmap_async(load_remove_save,
zip(output_filenames, output_filenames,
[for_which_classes] * len(output_filenames),
[min_valid_obj_size] * len(output_filenames))))
_ = [i.get() for i in results]
else:
print("WARNING! Cannot run postprocessing because the postprocessing file is missing. Make sure to run "
"consolidate_folds in the output folder of the model first!\nThe folder you need to run this in is "
"%s" % model)
pool.close()
pool.join()
def predict_cases_fastest(model, list_of_lists, output_filenames, folds, num_threads_preprocessing,
num_threads_nifti_save, segs_from_prev_stage=None, do_tta=True, mixed_precision=True,
overwrite_existing=False, all_in_gpu=False, step_size=0.5,
checkpoint_name="model_final_checkpoint", disable_postprocessing: bool = False):
assert len(list_of_lists) == len(output_filenames)
if segs_from_prev_stage is not None: assert len(segs_from_prev_stage) == len(output_filenames)
pool = Pool(num_threads_nifti_save)
results = []
cleaned_output_files = []
for o in output_filenames:
dr, f = os.path.split(o)
if len(dr) > 0:
maybe_mkdir_p(dr)
if not f.endswith(".nii.gz"):
f, _ = os.path.splitext(f)
f = f + ".nii.gz"
cleaned_output_files.append(join(dr, f))
if not overwrite_existing:
print("number of cases:", len(list_of_lists))
not_done_idx = [i for i, j in enumerate(cleaned_output_files) if not isfile(j)]
cleaned_output_files = [cleaned_output_files[i] for i in not_done_idx]
list_of_lists = [list_of_lists[i] for i in not_done_idx]
if segs_from_prev_stage is not None:
segs_from_prev_stage = [segs_from_prev_stage[i] for i in not_done_idx]
print("number of cases that still need to be predicted:", len(cleaned_output_files))
print("emptying cuda cache")
torch.cuda.empty_cache()
print("loading parameters for folds,", folds)
trainer, params = load_model_and_checkpoint_files(model, folds, mixed_precision=mixed_precision,
checkpoint_name=checkpoint_name)
print("starting preprocessing generator")
preprocessing = preprocess_multithreaded(trainer, list_of_lists, cleaned_output_files, num_threads_preprocessing,
segs_from_prev_stage)
print("starting prediction...")
for preprocessed in preprocessing:
print("getting data from preprocessor")
output_filename, (d, dct) = preprocessed
print("got something")
if isinstance(d, str):
print("what I got is a string, so I need to load a file")
data = np.load(d)
os.remove(d)
d = data
# preallocate the output arrays
# same dtype as the return value in predict_preprocessed_data_return_seg_and_softmax (saves time)
all_softmax_outputs = np.zeros((len(params), trainer.num_classes, *d.shape[1:]), dtype=np.float16)
all_seg_outputs = np.zeros((len(params), *d.shape[1:]), dtype=int)
print("predicting", output_filename)
for i, p in enumerate(params):
trainer.load_checkpoint_ram(p, False)
res = trainer.predict_preprocessed_data_return_seg_and_softmax(d, do_mirroring=do_tta,
mirror_axes=trainer.data_aug_params['mirror_axes'],
use_sliding_window=True,
step_size=step_size, use_gaussian=True,
all_in_gpu=all_in_gpu,
mixed_precision=mixed_precision)
if len(params) > 1:
# otherwise we dont need this and we can save ourselves the time it takes to copy that
all_softmax_outputs[i] = res[1]
all_seg_outputs[i] = res[0]
if hasattr(trainer, 'regions_class_order'):
region_class_order = trainer.regions_class_order
else:
region_class_order = None
assert region_class_order is None, "predict_cases_fastest can only work with regular softmax predictions " \
"and is therefore unable to handle trainer classes with region_class_order"
print("aggregating predictions")
if len(params) > 1:
softmax_mean = np.mean(all_softmax_outputs, 0)
seg = softmax_mean.argmax(0)
else:
seg = all_seg_outputs[0]
print("applying transpose_backward")
transpose_forward = trainer.plans.get('transpose_forward')
if transpose_forward is not None:
transpose_backward = trainer.plans.get('transpose_backward')
seg = seg.transpose([i for i in transpose_backward])
print("initializing segmentation export")
results.append(pool.starmap_async(save_segmentation_nifti,
((seg, output_filename, dct, 0, None),)
))
print("done")
print("inference done. Now waiting for the segmentation export to finish...")
_ = [i.get() for i in results]
# now apply postprocessing
# first load the postprocessing properties if they are present. Else raise a well visible warning
if not disable_postprocessing:
results = []
pp_file = join(model, "postprocessing.json")
if isfile(pp_file):
print("postprocessing...")
shutil.copy(pp_file, os.path.dirname(output_filenames[0]))
# for_which_classes stores for which of the classes everything but the largest connected component needs to be
# removed
for_which_classes, min_valid_obj_size = load_postprocessing(pp_file)
results.append(pool.starmap_async(load_remove_save,
zip(output_filenames, output_filenames,
[for_which_classes] * len(output_filenames),
[min_valid_obj_size] * len(output_filenames))))
_ = [i.get() for i in results]
else:
print("WARNING! Cannot run postprocessing because the postprocessing file is missing. Make sure to run "
"consolidate_folds in the output folder of the model first!\nThe folder you need to run this in is "
"%s" % model)
pool.close()
pool.join()
def check_input_folder_and_return_caseIDs(input_folder, expected_num_modalities):
print("This model expects %d input modalities for each image" % expected_num_modalities)
files = subfiles(input_folder, suffix=".nii.gz", join=False, sort=True)
maybe_case_ids = np.unique([i[:-12] for i in files])
remaining = deepcopy(files)
missing = []
assert len(files) > 0, "input folder did not contain any images (expected to find .nii.gz file endings)"
# now check if all required files are present and that no unexpected files are remaining
for c in maybe_case_ids:
for n in range(expected_num_modalities):
expected_output_file = c + "_%04.0d.nii.gz" % n
if not isfile(join(input_folder, expected_output_file)):
missing.append(expected_output_file)
else:
remaining.remove(expected_output_file)
print("Found %d unique case ids, here are some examples:" % len(maybe_case_ids),
np.random.choice(maybe_case_ids, min(len(maybe_case_ids), 10)))
print("If they don't look right, make sure to double check your filenames. They must end with _0000.nii.gz etc")
if len(remaining) > 0:
print("found %d unexpected remaining files in the folder. Here are some examples:" % len(remaining),
np.random.choice(remaining, min(len(remaining), 10)))
if len(missing) > 0:
print("Some files are missing:")
print(missing)
raise RuntimeError("missing files in input_folder")
return maybe_case_ids
def predict_from_folder(model: str, input_folder: str, output_folder: str, folds: Union[Tuple[int], List[int]],
save_npz: bool, num_threads_preprocessing: int, num_threads_nifti_save: int,
lowres_segmentations: Union[str, None],
part_id: int, num_parts: int, tta: bool, mixed_precision: bool = True,
overwrite_existing: bool = True, mode: str = 'normal', overwrite_all_in_gpu: bool = None,
step_size: float = 0.5, checkpoint_name: str = "model_final_checkpoint",
segmentation_export_kwargs: dict = None, disable_postprocessing: bool = False):
"""
here we use the standard naming scheme to generate list_of_lists and output_files needed by predict_cases
:param model:
:param input_folder:
:param output_folder:
:param folds:
:param save_npz:
:param num_threads_preprocessing:
:param num_threads_nifti_save:
:param lowres_segmentations:
:param part_id:
:param num_parts:
:param tta:
:param mixed_precision:
:param overwrite_existing: if not None then it will be overwritten with whatever is in there. None is default (no overwrite)
:return:
"""
maybe_mkdir_p(output_folder)
shutil.copy(join(model, 'plans.pkl'), output_folder)
assert isfile(join(model, "plans.pkl")), "Folder with saved model weights must contain a plans.pkl file"
expected_num_modalities = load_pickle(join(model, "plans.pkl"))['num_modalities']
# check input folder integrity
case_ids = check_input_folder_and_return_caseIDs(input_folder, expected_num_modalities)
output_files = [join(output_folder, i + ".nii.gz") for i in case_ids]
all_files = subfiles(input_folder, suffix=".nii.gz", join=False, sort=True)
list_of_lists = [[join(input_folder, i) for i in all_files if i[:len(j)].startswith(j) and
len(i) == (len(j) + 12)] for j in case_ids]
if lowres_segmentations is not None:
assert isdir(lowres_segmentations), "if lowres_segmentations is not None then it must point to a directory"
lowres_segmentations = [join(lowres_segmentations, i + ".nii.gz") for i in case_ids]
assert all([isfile(i) for i in lowres_segmentations]), "not all lowres_segmentations files are present. " \
"(I was searching for case_id.nii.gz in that folder)"
lowres_segmentations = lowres_segmentations[part_id::num_parts]
else:
lowres_segmentations = None
if mode == "normal":
if overwrite_all_in_gpu is None:
all_in_gpu = False
else:
all_in_gpu = overwrite_all_in_gpu
return predict_cases(model, list_of_lists[part_id::num_parts], output_files[part_id::num_parts], folds,
save_npz, num_threads_preprocessing, num_threads_nifti_save, lowres_segmentations, tta,
mixed_precision=mixed_precision, overwrite_existing=overwrite_existing,
all_in_gpu=all_in_gpu,
step_size=step_size, checkpoint_name=checkpoint_name,
segmentation_export_kwargs=segmentation_export_kwargs,
disable_postprocessing=disable_postprocessing)
elif mode == "fast":
if overwrite_all_in_gpu is None:
all_in_gpu = False
else:
all_in_gpu = overwrite_all_in_gpu
assert save_npz is False
return predict_cases_fast(model, list_of_lists[part_id::num_parts], output_files[part_id::num_parts], folds,
num_threads_preprocessing, num_threads_nifti_save, lowres_segmentations,
tta, mixed_precision=mixed_precision, overwrite_existing=overwrite_existing,
all_in_gpu=all_in_gpu,
step_size=step_size, checkpoint_name=checkpoint_name,
segmentation_export_kwargs=segmentation_export_kwargs,
disable_postprocessing=disable_postprocessing)
elif mode == "fastest":
if overwrite_all_in_gpu is None:
all_in_gpu = False
else:
all_in_gpu = overwrite_all_in_gpu
assert save_npz is False
return predict_cases_fastest(model, list_of_lists[part_id::num_parts], output_files[part_id::num_parts], folds,
num_threads_preprocessing, num_threads_nifti_save, lowres_segmentations,
tta, mixed_precision=mixed_precision, overwrite_existing=overwrite_existing,
all_in_gpu=all_in_gpu,
step_size=step_size, checkpoint_name=checkpoint_name,
disable_postprocessing=disable_postprocessing)
else:
raise ValueError("unrecognized mode. Must be normal, fast or fastest")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-i", '--input_folder', help="Must contain all modalities for each patient in the correct"
" order (same as training). Files must be named "
"CASENAME_XXXX.nii.gz where XXXX is the modality "
"identifier (0000, 0001, etc)", required=True)
parser.add_argument('-o', "--output_folder", required=True, help="folder for saving predictions")
parser.add_argument('-m', '--model_output_folder',
help='model output folder. Will automatically discover the folds '
'that were '
'run and use those as an ensemble', required=True)
parser.add_argument('-f', '--folds', nargs='+', default='None', help="folds to use for prediction. Default is None "
"which means that folds will be detected "
"automatically in the model output folder")
parser.add_argument('-z', '--save_npz', required=False, action='store_true', help="use this if you want to ensemble"
" these predictions with those of"
" other models. Softmax "
"probabilities will be saved as "
"compresed numpy arrays in "
"output_folder and can be merged "
"between output_folders with "
"merge_predictions.py")
parser.add_argument('-l', '--lowres_segmentations', required=False, default='None', help="if model is the highres "
"stage of the cascade then you need to use -l to specify where the segmentations of the "
"corresponding lowres unet are. Here they are required to do a prediction")
parser.add_argument("--part_id", type=int, required=False, default=0, help="Used to parallelize the prediction of "
"the folder over several GPUs. If you "
"want to use n GPUs to predict this "
"folder you need to run this command "
"n times with --part_id=0, ... n-1 and "
"--num_parts=n (each with a different "
"GPU (for example via "
"CUDA_VISIBLE_DEVICES=X)")
parser.add_argument("--num_parts", type=int, required=False, default=1,
help="Used to parallelize the prediction of "
"the folder over several GPUs. If you "
"want to use n GPUs to predict this "
"folder you need to run this command "
"n times with --part_id=0, ... n-1 and "
"--num_parts=n (each with a different "
"GPU (via "
"CUDA_VISIBLE_DEVICES=X)")
parser.add_argument("--num_threads_preprocessing", required=False, default=6, type=int, help=
"Determines many background processes will be used for data preprocessing. Reduce this if you "
"run into out of memory (RAM) problems. Default: 6")
parser.add_argument("--num_threads_nifti_save", required=False, default=2, type=int, help=
"Determines many background processes will be used for segmentation export. Reduce this if you "
"run into out of memory (RAM) problems. Default: 2")
parser.add_argument("--tta", required=False, type=int, default=1, help="Set to 0 to disable test time data "
"augmentation (speedup of factor "
"4(2D)/8(3D)), "
"lower quality segmentations")
parser.add_argument("--overwrite_existing", required=False, type=int, default=1, help="Set this to 0 if you need "
"to resume a previous "
"prediction. Default: 1 "
"(=existing segmentations "
"in output_folder will be "
"overwritten)")
parser.add_argument("--mode", type=str, default="normal", required=False)
parser.add_argument("--all_in_gpu", type=str, default="None", required=False, help="can be None, False or True")
parser.add_argument("--step_size", type=float, default=0.5, required=False, help="don't touch")
# parser.add_argument("--interp_order", required=False, default=3, type=int,
# help="order of interpolation for segmentations, has no effect if mode=fastest")
# parser.add_argument("--interp_order_z", required=False, default=0, type=int,
# help="order of interpolation along z is z is done differently")
# parser.add_argument("--force_separate_z", required=False, default="None", type=str,
# help="force_separate_z resampling. Can be None, True or False, has no effect if mode=fastest")
parser.add_argument('--disable_mixed_precision', default=False, action='store_true', required=False,
help='Predictions are done with mixed precision by default. This improves speed and reduces '
'the required vram. If you want to disable mixed precision you can set this flag. Note '
'that yhis is not recommended (mixed precision is ~2x faster!)')
args = parser.parse_args()
input_folder = args.input_folder
output_folder = args.output_folder
part_id = args.part_id
num_parts = args.num_parts
model = args.model_output_folder
folds = args.folds
save_npz = args.save_npz
lowres_segmentations = args.lowres_segmentations
num_threads_preprocessing = args.num_threads_preprocessing
num_threads_nifti_save = args.num_threads_nifti_save
tta = args.tta
step_size = args.step_size
# interp_order = args.interp_order
# interp_order_z = args.interp_order_z
# force_separate_z = args.force_separate_z
# if force_separate_z == "None":
# force_separate_z = None
# elif force_separate_z == "False":
# force_separate_z = False
# elif force_separate_z == "True":
# force_separate_z = True
# else:
# raise ValueError("force_separate_z must be None, True or False. Given: %s" % force_separate_z)
overwrite = args.overwrite_existing
mode = args.mode
all_in_gpu = args.all_in_gpu
if lowres_segmentations == "None":
lowres_segmentations = None
if isinstance(folds, list):
if folds[0] == 'all' and len(folds) == 1:
pass
else:
folds = [int(i) for i in folds]
elif folds == "None":
folds = None
else:
raise ValueError("Unexpected value for argument folds")
if tta == 0:
tta = False
elif tta == 1:
tta = True
else:
raise ValueError("Unexpected value for tta, Use 1 or 0")
if overwrite == 0:
overwrite = False
elif overwrite == 1:
overwrite = True
else:
raise ValueError("Unexpected value for overwrite, Use 1 or 0")
assert all_in_gpu in ['None', 'False', 'True']
if all_in_gpu == "None":
all_in_gpu = None
elif all_in_gpu == "True":
all_in_gpu = True
elif all_in_gpu == "False":
all_in_gpu = False
predict_from_folder(model, input_folder, output_folder, folds, save_npz, num_threads_preprocessing,
num_threads_nifti_save, lowres_segmentations, part_id, num_parts, tta,
mixed_precision=not args.disable_mixed_precision,
overwrite_existing=overwrite, mode=mode, overwrite_all_in_gpu=all_in_gpu, step_size=step_size)
|