File size: 8,810 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import shutil

import nnunet
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import load_pickle, subfiles
from multiprocessing.pool import Pool
from nnunet.configuration import default_num_threads
from nnunet.experiment_planning.common_utils import get_pool_and_conv_props
from nnunet.experiment_planning.experiment_planner_baseline_3DUNet import ExperimentPlanner
from nnunet.experiment_planning.utils import add_classes_in_slice_info
from nnunet.network_architecture.generic_UNet import Generic_UNet
from nnunet.paths import *
from nnunet.preprocessing.preprocessing import PreprocessorFor2D
from nnunet.training.model_restore import recursive_find_python_class


class ExperimentPlanner2D(ExperimentPlanner):
    def __init__(self, folder_with_cropped_data, preprocessed_output_folder):
        super(ExperimentPlanner2D, self).__init__(folder_with_cropped_data,
                                                  preprocessed_output_folder)
        self.data_identifier = default_data_identifier + "_2D"
        self.plans_fname = join(self.preprocessed_output_folder, "nnUNetPlans" + "_plans_2D.pkl")

        self.unet_base_num_features = 30
        self.unet_max_num_filters = 512
        self.unet_max_numpool = 999

        self.preprocessor_name = "PreprocessorFor2D"

    def get_properties_for_stage(self, current_spacing, original_spacing, original_shape, num_cases,
                                 num_modalities, num_classes):

        new_median_shape = np.round(original_spacing / current_spacing * original_shape).astype(int)

        dataset_num_voxels = np.prod(new_median_shape, dtype=np.int64) * num_cases
        input_patch_size = new_median_shape[1:]

        network_numpool, net_pool_kernel_sizes, net_conv_kernel_sizes, input_patch_size, \
        shape_must_be_divisible_by = get_pool_and_conv_props(current_spacing[1:], input_patch_size,
                                                             self.unet_featuremap_min_edge_length,
                                                             self.unet_max_numpool)

        estimated_gpu_ram_consumption = Generic_UNet.compute_approx_vram_consumption(input_patch_size,
                                                                                     network_numpool,
                                                                                     self.unet_base_num_features,
                                                                                     self.unet_max_num_filters,
                                                                                     num_modalities, num_classes,
                                                                                     net_pool_kernel_sizes,
                                                                                     conv_per_stage=self.conv_per_stage)

        batch_size = int(np.floor(Generic_UNet.use_this_for_batch_size_computation_2D /
                                  estimated_gpu_ram_consumption * Generic_UNet.DEFAULT_BATCH_SIZE_2D))
        if batch_size < self.unet_min_batch_size:
            raise RuntimeError("This framework is not made to process patches this large. We will add patch-based "
                               "2D networks later. Sorry for the inconvenience")

        # check if batch size is too large (more than 5 % of dataset)
        max_batch_size = np.round(self.batch_size_covers_max_percent_of_dataset * dataset_num_voxels /
                                  np.prod(input_patch_size, dtype=np.int64)).astype(int)
        batch_size = max(1, min(batch_size, max_batch_size))

        plan = {
            'batch_size': batch_size,
            'num_pool_per_axis': network_numpool,
            'patch_size': input_patch_size,
            'median_patient_size_in_voxels': new_median_shape,
            'current_spacing': current_spacing,
            'original_spacing': original_spacing,
            'pool_op_kernel_sizes': net_pool_kernel_sizes,
            'conv_kernel_sizes': net_conv_kernel_sizes,
            'do_dummy_2D_data_aug': False
        }
        return plan

    def plan_experiment(self):
        use_nonzero_mask_for_normalization = self.determine_whether_to_use_mask_for_norm()
        print("Are we using the nonzero maks for normalizaion?", use_nonzero_mask_for_normalization)

        spacings = self.dataset_properties['all_spacings']
        sizes = self.dataset_properties['all_sizes']
        all_classes = self.dataset_properties['all_classes']
        modalities = self.dataset_properties['modalities']
        num_modalities = len(list(modalities.keys()))

        target_spacing = self.get_target_spacing()
        new_shapes = np.array([np.array(i) / target_spacing * np.array(j) for i, j in zip(spacings, sizes)])

        max_spacing_axis = np.argmax(target_spacing)
        remaining_axes = [i for i in list(range(3)) if i != max_spacing_axis]
        self.transpose_forward = [max_spacing_axis] + remaining_axes
        self.transpose_backward = [np.argwhere(np.array(self.transpose_forward) == i)[0][0] for i in range(3)]

        # we base our calculations on the median shape of the datasets
        median_shape = np.median(np.vstack(new_shapes), 0)
        print("the median shape of the dataset is ", median_shape)

        max_shape = np.max(np.vstack(new_shapes), 0)
        print("the max shape in the dataset is ", max_shape)
        min_shape = np.min(np.vstack(new_shapes), 0)
        print("the min shape in the dataset is ", min_shape)

        print("we don't want feature maps smaller than ", self.unet_featuremap_min_edge_length, " in the bottleneck")

        # how many stages will the image pyramid have?
        self.plans_per_stage = []

        target_spacing_transposed = np.array(target_spacing)[self.transpose_forward]
        median_shape_transposed = np.array(median_shape)[self.transpose_forward]
        print("the transposed median shape of the dataset is ", median_shape_transposed)

        self.plans_per_stage.append(
            self.get_properties_for_stage(target_spacing_transposed, target_spacing_transposed, median_shape_transposed,
                                          num_cases=len(self.list_of_cropped_npz_files),
                                          num_modalities=num_modalities,
                                          num_classes=len(all_classes) + 1),
            )

        print(self.plans_per_stage)

        self.plans_per_stage = self.plans_per_stage[::-1]
        self.plans_per_stage = {i: self.plans_per_stage[i] for i in range(len(self.plans_per_stage))}  # convert to dict

        normalization_schemes = self.determine_normalization_scheme()
        # deprecated
        only_keep_largest_connected_component, min_size_per_class, min_region_size_per_class = None, None, None

        # these are independent of the stage
        plans = {'num_stages': len(list(self.plans_per_stage.keys())), 'num_modalities': num_modalities,
                 'modalities': modalities, 'normalization_schemes': normalization_schemes,
                 'dataset_properties': self.dataset_properties, 'list_of_npz_files': self.list_of_cropped_npz_files,
                 'original_spacings': spacings, 'original_sizes': sizes,
                 'preprocessed_data_folder': self.preprocessed_output_folder,
                 'num_classes': [len(label) for label in all_classes],
                 'all_classes': all_classes, 'base_num_features': self.unet_base_num_features,
                 'use_mask_for_norm': use_nonzero_mask_for_normalization,
                 'keep_only_largest_region': only_keep_largest_connected_component,
                 'min_region_size_per_class': min_region_size_per_class, 'min_size_per_class': min_size_per_class,
                 'transpose_forward': self.transpose_forward, 'transpose_backward': self.transpose_backward,
                 'data_identifier': self.data_identifier, 'plans_per_stage': self.plans_per_stage,
                 'preprocessor_name': self.preprocessor_name,
                 }

        self.plans = plans
        self.save_my_plans()