File size: 3,938 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from copy import deepcopy
from multiprocessing.pool import Pool

from batchgenerators.utilities.file_and_folder_operations import *
from medpy import metric
import SimpleITK as sitk
import numpy as np
from nnunet.configuration import default_num_threads
from nnunet.postprocessing.consolidate_postprocessing import collect_cv_niftis


def get_brats_regions():
    """
    this is only valid for the brats data in here where the labels are 1, 2, and 3. The original brats data have a
    different labeling convention!
    :return:
    """
    regions = {
        "whole tumor": (1, 2, 3),
        "tumor core": (2, 3),
        "enhancing tumor": (3,)
    }
    return regions


def get_KiTS_regions():
    regions = {
        "kidney incl tumor": (1, 2),
        "tumor": (2,)
    }
    return regions


def create_region_from_mask(mask, join_labels: tuple):
    mask_new = np.zeros_like(mask, dtype=np.uint8)
    for l in join_labels:
        mask_new[mask == l] = 1
    return mask_new


def evaluate_case(file_pred: str, file_gt: str, regions):
    image_gt = sitk.GetArrayFromImage(sitk.ReadImage(file_gt))
    image_pred = sitk.GetArrayFromImage(sitk.ReadImage(file_pred))
    results = []
    for r in regions:
        mask_pred = create_region_from_mask(image_pred, r)
        mask_gt = create_region_from_mask(image_gt, r)
        dc = np.nan if np.sum(mask_gt) == 0 and np.sum(mask_pred) == 0 else metric.dc(mask_pred, mask_gt)
        results.append(dc)
    return results


def evaluate_regions(folder_predicted: str, folder_gt: str, regions: dict, processes=default_num_threads):
    region_names = list(regions.keys())
    files_in_pred = subfiles(folder_predicted, suffix='.nii.gz', join=False)
    files_in_gt = subfiles(folder_gt, suffix='.nii.gz', join=False)
    have_no_gt = [i for i in files_in_pred if i not in files_in_gt]
    assert len(have_no_gt) == 0, "Some files in folder_predicted have not ground truth in folder_gt"
    have_no_pred = [i for i in files_in_gt if i not in files_in_pred]
    if len(have_no_pred) > 0:
        print("WARNING! Some files in folder_gt were not predicted (not present in folder_predicted)!")

    files_in_gt.sort()
    files_in_pred.sort()

    # run for all cases
    full_filenames_gt = [join(folder_gt, i) for i in files_in_pred]
    full_filenames_pred = [join(folder_predicted, i) for i in files_in_pred]

    p = Pool(processes)
    res = p.starmap(evaluate_case, zip(full_filenames_pred, full_filenames_gt, [list(regions.values())] * len(files_in_gt)))
    p.close()
    p.join()

    all_results = {r: [] for r in region_names}
    with open(join(folder_predicted, 'summary.csv'), 'w') as f:
        f.write("casename")
        for r in region_names:
            f.write(",%s" % r)
        f.write("\n")
        for i in range(len(files_in_pred)):
            f.write(files_in_pred[i][:-7])
            result_here = res[i]
            for k, r in enumerate(region_names):
                dc = result_here[k]
                f.write(",%02.4f" % dc)
                all_results[r].append(dc)
            f.write("\n")

        f.write('mean')
        for r in region_names:
            f.write(",%02.4f" % np.nanmean(all_results[r]))
        f.write("\n")
        f.write('median')
        for r in region_names:
            f.write(",%02.4f" % np.nanmedian(all_results[r]))
        f.write("\n")

        f.write('mean (nan is 1)')
        for r in region_names:
            tmp = np.array(all_results[r])
            tmp[np.isnan(tmp)] = 1
            f.write(",%02.4f" % np.mean(tmp))
        f.write("\n")
        f.write('median (nan is 1)')
        for r in region_names:
            tmp = np.array(all_results[r])
            tmp[np.isnan(tmp)] = 1
            f.write(",%02.4f" % np.median(tmp))
        f.write("\n")


if __name__ == '__main__':
    collect_cv_niftis('./', './cv_niftis')
    evaluate_regions('./cv_niftis/', './gt_niftis/', get_brats_regions())