File size: 12,344 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from multiprocessing import Pool
from multiprocessing.dummy import Pool
import SimpleITK as sitk
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from skimage.io import imread
from skimage.io import imsave
from skimage.morphology import ball
from skimage.morphology import erosion
from skimage.transform import resize
from nnunet.paths import nnUNet_raw_data
from nnunet.paths import preprocessing_output_dir
def load_bmp_convert_to_nifti_borders(img_file, lab_file, img_out_base, anno_out, spacing, border_thickness=0.7):
img = imread(img_file)
img_itk = sitk.GetImageFromArray(img.astype(np.float32))
img_itk.SetSpacing(np.array(spacing)[::-1])
sitk.WriteImage(img_itk, join(img_out_base + "_0000.nii.gz"))
if lab_file is not None:
l = imread(lab_file)
borders = generate_border_as_suggested_by_twollmann(l, spacing, border_thickness)
l[l > 0] = 1
l[borders == 1] = 2
l_itk = sitk.GetImageFromArray(l.astype(np.uint8))
l_itk.SetSpacing(np.array(spacing)[::-1])
sitk.WriteImage(l_itk, anno_out)
def generate_ball(spacing, radius, dtype=int):
radius_in_voxels = np.round(radius / np.array(spacing)).astype(int)
n = 2 * radius_in_voxels + 1
ball_iso = ball(max(n) * 2, dtype=np.float64)
ball_resampled = resize(ball_iso, n, 1, 'constant', 0, clip=True, anti_aliasing=False, preserve_range=True)
ball_resampled[ball_resampled > 0.5] = 1
ball_resampled[ball_resampled <= 0.5] = 0
return ball_resampled.astype(dtype)
def generate_border_as_suggested_by_twollmann(label_img: np.ndarray, spacing, border_thickness: float = 2) -> np.ndarray:
border = np.zeros_like(label_img)
selem = generate_ball(spacing, border_thickness)
for l in np.unique(label_img):
if l == 0: continue
mask = (label_img == l).astype(int)
eroded = erosion(mask, selem)
border[(eroded == 0) & (mask != 0)] = 1
return border
def find_differences(labelstr1, labelstr2):
for n in subfiles(labelstr1, suffix='.nii.gz', join=False):
a = sitk.GetArrayFromImage(sitk.ReadImage(join(labelstr1, n)))
b = sitk.GetArrayFromImage(sitk.ReadImage(join(labelstr2, n)))
print(n, np.sum(a != b))
def prepare_task(base, task_id, task_name, spacing, border_thickness: float = 15, processes: int = 16):
p = Pool(processes)
foldername = "Task%03.0d_%s" % (task_id, task_name)
out_base = join(nnUNet_raw_data, foldername)
imagestr = join(out_base, "imagesTr")
imagests = join(out_base, "imagesTs")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
train_patient_names = []
test_patient_names = []
res = []
for train_sequence in [i for i in subfolders(base + "_train", join=False) if not i.endswith("_GT")]:
train_cases = subfiles(join(base + '_train', train_sequence), suffix=".tif", join=False)
for t in train_cases:
casename = train_sequence + "_" + t[:-4]
img_file = join(base + '_train', train_sequence, t)
lab_file = join(base + '_train', train_sequence + "_GT", "SEG", "man_seg" + t[1:])
if not isfile(lab_file):
continue
img_out_base = join(imagestr, casename)
anno_out = join(labelstr, casename + ".nii.gz")
res.append(
p.starmap_async(load_bmp_convert_to_nifti_borders, ((img_file, lab_file, img_out_base, anno_out, spacing, border_thickness),)))
train_patient_names.append(casename)
for test_sequence in [i for i in subfolders(base + "_test", join=False) if not i.endswith("_GT")]:
test_cases = subfiles(join(base + '_test', test_sequence), suffix=".tif", join=False)
for t in test_cases:
casename = test_sequence + "_" + t[:-4]
img_file = join(base + '_test', test_sequence, t)
lab_file = None
img_out_base = join(imagests, casename)
anno_out = None
res.append(
p.starmap_async(load_bmp_convert_to_nifti_borders, ((img_file, lab_file, img_out_base, anno_out, spacing, border_thickness),)))
test_patient_names.append(casename)
_ = [i.get() for i in res]
json_dict = {}
json_dict['name'] = task_name
json_dict['description'] = ""
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = ""
json_dict['licence'] = ""
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "BF",
}
json_dict['labels'] = {
"0": "background",
"1": "cell",
"2": "border",
}
json_dict['numTraining'] = len(train_patient_names)
json_dict['numTest'] = len(test_patient_names)
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
train_patient_names]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_patient_names]
save_json(json_dict, os.path.join(out_base, "dataset.json"))
p.close()
p.join()
def plot_images(folder, output_folder):
maybe_mkdir_p(output_folder)
import matplotlib.pyplot as plt
for i in subfiles(folder, suffix='.nii.gz', join=False):
img = sitk.GetArrayFromImage(sitk.ReadImage(join(folder, i)))
center_slice = img[img.shape[0]//2]
plt.imsave(join(output_folder, i[:-7] + '.png'), center_slice)
def convert_to_tiff(nifti_image: str, output_name: str):
npy = sitk.GetArrayFromImage(sitk.ReadImage(nifti_image))
imsave(output_name, npy.astype(np.uint16), compress=6)
def convert_to_instance_seg(arr: np.ndarray, spacing: tuple = (0.2, 0.125, 0.125)):
from skimage.morphology import label, dilation
# 1 is core, 2 is border
objects = label((arr == 1).astype(int))
final = np.copy(objects)
remaining_border = arr == 2
current = np.copy(objects)
dilated_mm = np.array((0, 0, 0))
spacing = np.array(spacing)
while np.sum(remaining_border) > 0:
strel_size = [0, 0, 0]
maximum_dilation = max(dilated_mm)
for i in range(3):
if spacing[i] == min(spacing):
strel_size[i] = 1
continue
if dilated_mm[i] + spacing[i] / 2 < maximum_dilation:
strel_size[i] = 1
ball_here = ball(1)
if strel_size[0] == 0: ball_here = ball_here[1:2]
if strel_size[1] == 0: ball_here = ball_here[:, 1:2]
if strel_size[2] == 0: ball_here = ball_here[:, :, 1:2]
#print(1)
dilated = dilation(current, ball_here)
diff = (current == 0) & (dilated != current)
final[diff & remaining_border] = dilated[diff & remaining_border]
remaining_border[diff] = 0
current = dilated
dilated_mm = [dilated_mm[i] + spacing[i] if strel_size[i] == 1 else dilated_mm[i] for i in range(3)]
return final.astype(np.uint32)
def convert_to_instance_seg2(arr: np.ndarray, spacing: tuple = (0.2, 0.125, 0.125), small_center_threshold=30,
isolated_border_as_separate_instance_threshold: int = 15):
from skimage.morphology import label, dilation
# we first identify centers that are too small and set them to be border. This should remove false positive instances
objects = label((arr == 1).astype(int))
for o in np.unique(objects):
if o > 0 and np.sum(objects == o) <= small_center_threshold:
arr[objects == o] = 2
# 1 is core, 2 is border
objects = label((arr == 1).astype(int))
final = np.copy(objects)
remaining_border = arr == 2
current = np.copy(objects)
dilated_mm = np.array((0, 0, 0))
spacing = np.array(spacing)
while np.sum(remaining_border) > 0:
strel_size = [0, 0, 0]
maximum_dilation = max(dilated_mm)
for i in range(3):
if spacing[i] == min(spacing):
strel_size[i] = 1
continue
if dilated_mm[i] + spacing[i] / 2 < maximum_dilation:
strel_size[i] = 1
ball_here = ball(1)
if strel_size[0] == 0: ball_here = ball_here[1:2]
if strel_size[1] == 0: ball_here = ball_here[:, 1:2]
if strel_size[2] == 0: ball_here = ball_here[:, :, 1:2]
#print(1)
dilated = dilation(current, ball_here)
diff = (current == 0) & (dilated != current)
final[diff & remaining_border] = dilated[diff & remaining_border]
remaining_border[diff] = 0
current = dilated
dilated_mm = [dilated_mm[i] + spacing[i] if strel_size[i] == 1 else dilated_mm[i] for i in range(3)]
# what can happen is that a cell is so small that the network only predicted border and no core. This cell will be
# fused with the nearest other instance, which we don't want. Therefore we identify isolated border predictions and
# give them a separate instance id
# we identify isolated border predictions by checking each foreground object in arr and see whether this object
# also contains label 1
max_label = np.max(final)
foreground_objects = label((arr != 0).astype(int))
for i in np.unique(foreground_objects):
if i > 0 and (1 not in np.unique(arr[foreground_objects==i])):
size_of_object = np.sum(foreground_objects==i)
if size_of_object >= isolated_border_as_separate_instance_threshold:
final[foreground_objects == i] = max_label + 1
max_label += 1
#print('yeah boi')
return final.astype(np.uint32)
def load_instanceseg_save(in_file: str, out_file:str, better: bool):
itk_img = sitk.ReadImage(in_file)
if not better:
instanceseg = convert_to_instance_seg(sitk.GetArrayFromImage(itk_img))
else:
instanceseg = convert_to_instance_seg2(sitk.GetArrayFromImage(itk_img))
itk_out = sitk.GetImageFromArray(instanceseg)
itk_out.CopyInformation(itk_img)
sitk.WriteImage(itk_out, out_file)
def convert_all_to_instance(input_folder: str, output_folder: str, processes: int = 24, better: bool = False):
maybe_mkdir_p(output_folder)
p = Pool(processes)
files = subfiles(input_folder, suffix='.nii.gz', join=False)
output_files = [join(output_folder, i) for i in files]
input_files = [join(input_folder, i) for i in files]
better = [better] * len(files)
r = p.starmap_async(load_instanceseg_save, zip(input_files, output_files, better))
_ = r.get()
p.close()
p.join()
if __name__ == "__main__":
base = "/home/fabian/data/Fluo-N3DH-SIM"
task_id = 76
task_name = 'Fluo_N3DH_SIM'
spacing = (0.2, 0.125, 0.125)
border_thickness = 0.5
prepare_task(base, task_id, task_name, spacing, border_thickness, 12)
# we need custom splits
task_name = "Task076_Fluo_N3DH_SIM"
labelsTr = join(nnUNet_raw_data, task_name, "labelsTr")
cases = subfiles(labelsTr, suffix='.nii.gz', join=False)
splits = []
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('01_')],
'val': [i[:-7] for i in cases if i.startswith('02_')]}
)
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('02_')],
'val': [i[:-7] for i in cases if i.startswith('01_')]}
)
maybe_mkdir_p(join(preprocessing_output_dir, task_name))
save_pickle(splits, join(preprocessing_output_dir, task_name, "splits_final.pkl"))
# test set was converted to instance seg with convert_all_to_instance with better=True
# convert to tiff with convert_to_tiff
|