File size: 26,523 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from collections import OrderedDict
from copy import deepcopy
import nnunet
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.configuration import default_num_threads
from nnunet.experiment_planning.DatasetAnalyzer import DatasetAnalyzer
from nnunet.experiment_planning.common_utils import get_pool_and_conv_props_poolLateV2
from nnunet.experiment_planning.utils import create_lists_from_splitted_dataset
from nnunet.network_architecture.generic_UNet import Generic_UNet
from nnunet.paths import *
from nnunet.preprocessing.cropping import get_case_identifier_from_npz
from nnunet.training.model_restore import recursive_find_python_class
class ExperimentPlanner(object):
def __init__(self, folder_with_cropped_data, preprocessed_output_folder):
self.folder_with_cropped_data = folder_with_cropped_data
self.preprocessed_output_folder = preprocessed_output_folder
self.list_of_cropped_npz_files = subfiles(self.folder_with_cropped_data, True, None, ".npz", True)
self.preprocessor_name = "GenericPreprocessor"
assert isfile(join(self.folder_with_cropped_data, "dataset_properties.pkl")), \
"folder_with_cropped_data must contain dataset_properties.pkl"
self.dataset_properties = load_pickle(join(self.folder_with_cropped_data, "dataset_properties.pkl"))
self.plans_per_stage = OrderedDict()
self.plans = OrderedDict()
self.plans_fname = join(self.preprocessed_output_folder, "nnUNetPlans" + "fixed_plans_3D.pkl")
self.data_identifier = default_data_identifier
self.transpose_forward = [0, 1, 2]
self.transpose_backward = [0, 1, 2]
self.unet_base_num_features = Generic_UNet.BASE_NUM_FEATURES_3D
self.unet_max_num_filters = 320
self.unet_max_numpool = 999
self.unet_min_batch_size = 2
self.unet_featuremap_min_edge_length = 4
self.target_spacing_percentile = 50
self.anisotropy_threshold = 3
self.how_much_of_a_patient_must_the_network_see_at_stage0 = 4 # 1/4 of a patient
self.batch_size_covers_max_percent_of_dataset = 0.05 # all samples in the batch together cannot cover more
# than 5% of the entire dataset
self.conv_per_stage = 2
def get_target_spacing(self):
spacings = self.dataset_properties['all_spacings']
# target = np.median(np.vstack(spacings), 0)
# if target spacing is very anisotropic we may want to not downsample the axis with the worst spacing
# uncomment after mystery task submission
"""worst_spacing_axis = np.argmax(target)
if max(target) > (2.5 * min(target)):
spacings_of_that_axis = np.vstack(spacings)[:, worst_spacing_axis]
target_spacing_of_that_axis = np.percentile(spacings_of_that_axis, 5)
target[worst_spacing_axis] = target_spacing_of_that_axis"""
target = np.percentile(np.vstack(spacings), self.target_spacing_percentile, 0)
return target
def save_my_plans(self):
with open(self.plans_fname, 'wb') as f:
pickle.dump(self.plans, f)
def load_my_plans(self):
self.plans = load_pickle(self.plans_fname)
self.plans_per_stage = self.plans['plans_per_stage']
self.dataset_properties = self.plans['dataset_properties']
self.transpose_forward = self.plans['transpose_forward']
self.transpose_backward = self.plans['transpose_backward']
def determine_postprocessing(self):
pass
"""
Spoiler: This is unused, postprocessing was removed. Ignore it.
:return:
print("determining postprocessing...")
props_per_patient = self.dataset_properties['segmentation_props_per_patient']
all_region_keys = [i for k in props_per_patient.keys() for i in props_per_patient[k]['only_one_region'].keys()]
all_region_keys = list(set(all_region_keys))
only_keep_largest_connected_component = OrderedDict()
for r in all_region_keys:
all_results = [props_per_patient[k]['only_one_region'][r] for k in props_per_patient.keys()]
only_keep_largest_connected_component[tuple(r)] = all(all_results)
print("Postprocessing: only_keep_largest_connected_component", only_keep_largest_connected_component)
all_classes = self.dataset_properties['all_classes']
classes = [i for i in all_classes if i > 0]
props_per_patient = self.dataset_properties['segmentation_props_per_patient']
min_size_per_class = OrderedDict()
for c in classes:
all_num_voxels = []
for k in props_per_patient.keys():
all_num_voxels.append(props_per_patient[k]['volume_per_class'][c])
if len(all_num_voxels) > 0:
min_size_per_class[c] = np.percentile(all_num_voxels, 1) * MIN_SIZE_PER_CLASS_FACTOR
else:
min_size_per_class[c] = np.inf
min_region_size_per_class = OrderedDict()
for c in classes:
region_sizes = [l for k in props_per_patient for l in props_per_patient[k]['region_volume_per_class'][c]]
if len(region_sizes) > 0:
min_region_size_per_class[c] = min(region_sizes)
# we don't need that line but better safe than sorry, right?
min_region_size_per_class[c] = min(min_region_size_per_class[c], min_size_per_class[c])
else:
min_region_size_per_class[c] = 0
print("Postprocessing: min_size_per_class", min_size_per_class)
print("Postprocessing: min_region_size_per_class", min_region_size_per_class)
return only_keep_largest_connected_component, min_size_per_class, min_region_size_per_class
"""
def get_properties_for_stage(self, current_spacing, original_spacing, original_shape, num_cases,
num_modalities, num_classes):
"""
Computation of input patch size starts out with the new median shape (in voxels) of a dataset. This is
opposed to prior experiments where I based it on the median size in mm. The rationale behind this is that
for some organ of interest the acquisition method will most likely be chosen such that the field of view and
voxel resolution go hand in hand to show the doctor what they need to see. This assumption may be violated
for some modalities with anisotropy (cine MRI) but we will have t live with that. In future experiments I
will try to 1) base input patch size match aspect ratio of input size in mm (instead of voxels) and 2) to
try to enforce that we see the same 'distance' in all directions (try to maintain equal size in mm of patch)
The patches created here attempt keep the aspect ratio of the new_median_shape
:param current_spacing:
:param original_spacing:
:param original_shape:
:param num_cases:
:return:
"""
new_median_shape = np.round(original_spacing / current_spacing * original_shape).astype(int)
dataset_num_voxels = np.prod(new_median_shape) * num_cases
# the next line is what we had before as a default. The patch size had the same aspect ratio as the median shape of a patient. We swapped t
# input_patch_size = new_median_shape
# compute how many voxels are one mm
input_patch_size = 1 / np.array(current_spacing)
# normalize voxels per mm
input_patch_size /= input_patch_size.mean()
# create an isotropic patch of size 512x512x512mm
input_patch_size *= 1 / min(input_patch_size) * 512 # to get a starting value
input_patch_size = np.round(input_patch_size).astype(int)
# clip it to the median shape of the dataset because patches larger then that make not much sense
input_patch_size = [min(i, j) for i, j in zip(input_patch_size, new_median_shape)]
network_num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, new_shp, \
shape_must_be_divisible_by = get_pool_and_conv_props_poolLateV2(input_patch_size,
self.unet_featuremap_min_edge_length,
self.unet_max_numpool,
current_spacing)
ref = Generic_UNet.use_this_for_batch_size_computation_3D
here = Generic_UNet.compute_approx_vram_consumption(new_shp, network_num_pool_per_axis,
self.unet_base_num_features,
self.unet_max_num_filters, num_modalities,
num_classes,
pool_op_kernel_sizes, conv_per_stage=self.conv_per_stage)
while here > ref:
axis_to_be_reduced = np.argsort(new_shp / new_median_shape)[-1]
tmp = deepcopy(new_shp)
tmp[axis_to_be_reduced] -= shape_must_be_divisible_by[axis_to_be_reduced]
_, _, _, _, shape_must_be_divisible_by_new = \
get_pool_and_conv_props_poolLateV2(tmp,
self.unet_featuremap_min_edge_length,
self.unet_max_numpool,
current_spacing)
new_shp[axis_to_be_reduced] -= shape_must_be_divisible_by_new[axis_to_be_reduced]
# we have to recompute numpool now:
network_num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, new_shp, \
shape_must_be_divisible_by = get_pool_and_conv_props_poolLateV2(new_shp,
self.unet_featuremap_min_edge_length,
self.unet_max_numpool,
current_spacing)
here = Generic_UNet.compute_approx_vram_consumption(new_shp, network_num_pool_per_axis,
self.unet_base_num_features,
self.unet_max_num_filters, num_modalities,
num_classes, pool_op_kernel_sizes,
conv_per_stage=self.conv_per_stage)
# print(new_shp)
input_patch_size = new_shp
batch_size = Generic_UNet.DEFAULT_BATCH_SIZE_3D # This is what works with 128**3
batch_size = int(np.floor(max(ref / here, 1) * batch_size))
# check if batch size is too large
max_batch_size = np.round(self.batch_size_covers_max_percent_of_dataset * dataset_num_voxels /
np.prod(input_patch_size, dtype=np.int64)).astype(int)
max_batch_size = max(max_batch_size, self.unet_min_batch_size)
batch_size = max(1, min(batch_size, max_batch_size))
do_dummy_2D_data_aug = (max(input_patch_size) / input_patch_size[
0]) > self.anisotropy_threshold
plan = {
'batch_size': batch_size,
'num_pool_per_axis': network_num_pool_per_axis,
'patch_size': input_patch_size,
'median_patient_size_in_voxels': new_median_shape,
'current_spacing': current_spacing,
'original_spacing': original_spacing,
'do_dummy_2D_data_aug': do_dummy_2D_data_aug,
'pool_op_kernel_sizes': pool_op_kernel_sizes,
'conv_kernel_sizes': conv_kernel_sizes,
}
return plan
def plan_experiment(self):
use_nonzero_mask_for_normalization = self.determine_whether_to_use_mask_for_norm()
print("Are we using the nonzero mask for normalizaion?", use_nonzero_mask_for_normalization)
spacings = self.dataset_properties['all_spacings']
sizes = self.dataset_properties['all_sizes']
all_classes = self.dataset_properties['all_classes']
modalities = self.dataset_properties['modalities']
num_modalities = len(list(modalities.keys()))
target_spacing = self.get_target_spacing()
new_shapes = [np.array(i) / target_spacing * np.array(j) for i, j in zip(spacings, sizes)]
max_spacing_axis = np.argmax(target_spacing)
remaining_axes = [i for i in list(range(3)) if i != max_spacing_axis]
self.transpose_forward = [max_spacing_axis] + remaining_axes
self.transpose_backward = [np.argwhere(np.array(self.transpose_forward) == i)[0][0] for i in range(3)]
# we base our calculations on the median shape of the datasets
median_shape = np.median(np.vstack(new_shapes), 0)
print("the median shape of the dataset is ", median_shape)
max_shape = np.max(np.vstack(new_shapes), 0)
print("the max shape in the dataset is ", max_shape)
min_shape = np.min(np.vstack(new_shapes), 0)
print("the min shape in the dataset is ", min_shape)
print("we don't want feature maps smaller than ", self.unet_featuremap_min_edge_length, " in the bottleneck")
# how many stages will the image pyramid have?
self.plans_per_stage = list()
target_spacing_transposed = np.array(target_spacing)[self.transpose_forward]
median_shape_transposed = np.array(median_shape)[self.transpose_forward]
print("the transposed median shape of the dataset is ", median_shape_transposed)
print("generating configuration for 3d_fullres")
self.plans_per_stage.append(self.get_properties_for_stage(target_spacing_transposed, target_spacing_transposed,
median_shape_transposed,
len(self.list_of_cropped_npz_files),
num_modalities, len(all_classes) + 1))
# thanks Zakiyi (https://github.com/MIC-DKFZ/nnUNet/issues/61) for spotting this bug :-)
# if np.prod(self.plans_per_stage[-1]['median_patient_size_in_voxels'], dtype=np.int64) / \
# architecture_input_voxels < HOW_MUCH_OF_A_PATIENT_MUST_THE_NETWORK_SEE_AT_STAGE0:
architecture_input_voxels_here = np.prod(self.plans_per_stage[-1]['patch_size'], dtype=np.int64)
if np.prod(median_shape) / architecture_input_voxels_here < \
self.how_much_of_a_patient_must_the_network_see_at_stage0:
more = False
else:
more = True
if more:
print("generating configuration for 3d_lowres")
# if we are doing more than one stage then we want the lowest stage to have exactly
# HOW_MUCH_OF_A_PATIENT_MUST_THE_NETWORK_SEE_AT_STAGE0 (this is 4 by default so the number of voxels in the
# median shape of the lowest stage must be 4 times as much as the network can process at once (128x128x128 by
# default). Problem is that we are downsampling higher resolution axes before we start downsampling the
# out-of-plane axis. We could probably/maybe do this analytically but I am lazy, so here
# we do it the dumb way
lowres_stage_spacing = deepcopy(target_spacing)
num_voxels = np.prod(median_shape, dtype=np.float64)
while num_voxels > self.how_much_of_a_patient_must_the_network_see_at_stage0 * architecture_input_voxels_here:
max_spacing = max(lowres_stage_spacing)
if np.any((max_spacing / lowres_stage_spacing) > 2):
lowres_stage_spacing[(max_spacing / lowres_stage_spacing) > 2] \
*= 1.01
else:
lowres_stage_spacing *= 1.01
num_voxels = np.prod(target_spacing / lowres_stage_spacing * median_shape, dtype=np.float64)
lowres_stage_spacing_transposed = np.array(lowres_stage_spacing)[self.transpose_forward]
new = self.get_properties_for_stage(lowres_stage_spacing_transposed, target_spacing_transposed,
median_shape_transposed,
len(self.list_of_cropped_npz_files),
num_modalities, len(all_classes) + 1)
architecture_input_voxels_here = np.prod(new['patch_size'], dtype=np.int64)
if 2 * np.prod(new['median_patient_size_in_voxels'], dtype=np.int64) < np.prod(
self.plans_per_stage[0]['median_patient_size_in_voxels'], dtype=np.int64):
self.plans_per_stage.append(new)
self.plans_per_stage = self.plans_per_stage[::-1]
self.plans_per_stage = {i: self.plans_per_stage[i] for i in range(len(self.plans_per_stage))} # convert to dict
print(self.plans_per_stage)
print("transpose forward", self.transpose_forward)
print("transpose backward", self.transpose_backward)
normalization_schemes = self.determine_normalization_scheme()
only_keep_largest_connected_component, min_size_per_class, min_region_size_per_class = None, None, None
# removed training data based postprocessing. This is deprecated
# these are independent of the stage
plans = {'num_stages': len(list(self.plans_per_stage.keys())), 'num_modalities': num_modalities,
'modalities': modalities, 'normalization_schemes': normalization_schemes,
'dataset_properties': self.dataset_properties, 'list_of_npz_files': self.list_of_cropped_npz_files,
'original_spacings': spacings, 'original_sizes': sizes,
'preprocessed_data_folder': self.preprocessed_output_folder, 'num_classes': len(all_classes),
'all_classes': all_classes, 'base_num_features': self.unet_base_num_features,
'use_mask_for_norm': use_nonzero_mask_for_normalization,
'keep_only_largest_region': only_keep_largest_connected_component,
'min_region_size_per_class': min_region_size_per_class, 'min_size_per_class': min_size_per_class,
'transpose_forward': self.transpose_forward, 'transpose_backward': self.transpose_backward,
'data_identifier': self.data_identifier, 'plans_per_stage': self.plans_per_stage,
'preprocessor_name': self.preprocessor_name,
'conv_per_stage': self.conv_per_stage,
}
self.plans = plans
self.save_my_plans()
def determine_normalization_scheme(self):
schemes = OrderedDict()
modalities = self.dataset_properties['modalities']
num_modalities = len(list(modalities.keys()))
for i in range(num_modalities):
if modalities[i] == "CT" or modalities[i] == 'ct':
schemes[i] = "CT"
elif modalities[i] == 'noNorm':
schemes[i] = "noNorm"
else:
schemes[i] = "nonCT"
return schemes
def save_properties_of_cropped(self, case_identifier, properties):
with open(join(self.folder_with_cropped_data, "%s.pkl" % case_identifier), 'wb') as f:
pickle.dump(properties, f)
def load_properties_of_cropped(self, case_identifier):
with open(join(self.folder_with_cropped_data, "%s.pkl" % case_identifier), 'rb') as f:
properties = pickle.load(f)
return properties
def determine_whether_to_use_mask_for_norm(self):
# only use the nonzero mask for normalization of the cropping based on it resulted in a decrease in
# image size (this is an indication that the data is something like brats/isles and then we want to
# normalize in the brain region only)
modalities = self.dataset_properties['modalities']
num_modalities = len(list(modalities.keys()))
use_nonzero_mask_for_norm = OrderedDict()
for i in range(num_modalities):
if "CT" in modalities[i]:
use_nonzero_mask_for_norm[i] = False
else:
all_size_reductions = []
for k in self.dataset_properties['size_reductions'].keys():
all_size_reductions.append(self.dataset_properties['size_reductions'][k])
if np.median(all_size_reductions) < 3 / 4.:
print("using nonzero mask for normalization")
use_nonzero_mask_for_norm[i] = True
else:
print("not using nonzero mask for normalization")
use_nonzero_mask_for_norm[i] = False
for c in self.list_of_cropped_npz_files:
case_identifier = get_case_identifier_from_npz(c)
properties = self.load_properties_of_cropped(case_identifier)
properties['use_nonzero_mask_for_norm'] = use_nonzero_mask_for_norm
self.save_properties_of_cropped(case_identifier, properties)
use_nonzero_mask_for_normalization = use_nonzero_mask_for_norm
return use_nonzero_mask_for_normalization
def write_normalization_scheme_to_patients(self):
"""
This is used for test set preprocessing
:return:
"""
for c in self.list_of_cropped_npz_files:
case_identifier = get_case_identifier_from_npz(c)
properties = self.load_properties_of_cropped(case_identifier)
properties['use_nonzero_mask_for_norm'] = self.plans['use_mask_for_norm']
self.save_properties_of_cropped(case_identifier, properties)
def run_preprocessing(self, num_threads):
if os.path.isdir(join(self.preprocessed_output_folder, "gt_segmentations")):
shutil.rmtree(join(self.preprocessed_output_folder, "gt_segmentations"))
shutil.copytree(join(self.folder_with_cropped_data, "gt_segmentations"),
join(self.preprocessed_output_folder, "gt_segmentations"))
normalization_schemes = self.plans['normalization_schemes']
use_nonzero_mask_for_normalization = self.plans['use_mask_for_norm']
intensityproperties = self.plans['dataset_properties']['intensityproperties']
preprocessor_class = recursive_find_python_class([join(nnunet.__path__[0], "preprocessing")],
self.preprocessor_name, current_module="nnunet.preprocessing")
assert preprocessor_class is not None
preprocessor = preprocessor_class(normalization_schemes, use_nonzero_mask_for_normalization,
self.transpose_forward,
intensityproperties)
target_spacings = [i["current_spacing"] for i in self.plans_per_stage.values()]
if self.plans['num_stages'] > 1 and not isinstance(num_threads, (list, tuple)):
num_threads = (default_num_threads, num_threads)
elif self.plans['num_stages'] == 1 and isinstance(num_threads, (list, tuple)):
num_threads = num_threads[-1]
preprocessor.run(target_spacings, self.folder_with_cropped_data, self.preprocessed_output_folder,
self.plans['data_identifier'], num_threads)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--task_ids", nargs="+", help="list of int")
parser.add_argument("-p", action="store_true", help="set this if you actually want to run the preprocessing. If "
"this is not set then this script will only create the plans file")
parser.add_argument("-tl", type=int, required=False, default=8, help="num_threads_lowres")
parser.add_argument("-tf", type=int, required=False, default=8, help="num_threads_fullres")
args = parser.parse_args()
task_ids = args.task_ids
run_preprocessing = args.p
tl = args.tl
tf = args.tf
tasks = []
for i in task_ids:
i = int(i)
candidates = subdirs(nnUNet_cropped_data, prefix="Task%03.0d" % i, join=False)
assert len(candidates) == 1
tasks.append(candidates[0])
for t in tasks:
try:
print("\n\n\n", t)
cropped_out_dir = os.path.join(nnUNet_cropped_data, t)
preprocessing_output_dir_this_task = os.path.join(preprocessing_output_dir, t)
splitted_4d_output_dir_task = os.path.join(nnUNet_raw_data, t)
lists, modalities = create_lists_from_splitted_dataset(splitted_4d_output_dir_task)
dataset_analyzer = DatasetAnalyzer(cropped_out_dir, overwrite=False)
_ = dataset_analyzer.analyze_dataset() # this will write output files that will be used by the ExperimentPlanner
maybe_mkdir_p(preprocessing_output_dir_this_task)
shutil.copy(join(cropped_out_dir, "dataset_properties.pkl"), preprocessing_output_dir_this_task)
shutil.copy(join(nnUNet_raw_data, t, "dataset.json"), preprocessing_output_dir_this_task)
threads = (tl, tf)
print("number of threads: ", threads, "\n")
exp_planner = ExperimentPlanner(cropped_out_dir, preprocessing_output_dir_this_task)
exp_planner.plan_experiment()
if run_preprocessing:
exp_planner.run_preprocessing(threads)
except Exception as e:
print(e)
|