File size: 7,725 Bytes
722738e
54b7544
722738e
 
 
fadb2ab
722738e
 
fadb2ab
722738e
 
54b7544
722738e
 
54b7544
 
 
 
 
722738e
 
 
 
 
 
54b7544
722738e
54b7544
 
 
 
 
 
 
 
 
 
 
b6879dc
54b7544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722738e
54b7544
722738e
 
54b7544
722738e
54b7544
 
 
722738e
fadb2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722738e
54b7544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fadb2ab
54b7544
 
fadb2ab
54b7544
 
 
 
 
 
 
 
 
 
 
 
 
 
fadb2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b7544
722738e
54b7544
 
 
 
 
 
 
722738e
fadb2ab
 
 
 
 
722738e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import ToTensor
from transformers import SamModel, SamProcessor

to_tensor = ToTensor()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = SamProcessor.from_pretrained('facebook/sam-vit-base')
model = SamModel.from_pretrained('hmdliu/sidewalks-seg')
model.to(device)

def segment_image(image, threshold, x_min, y_min, x_max, y_max):
    # tolerate TIFF image input
    image.save('image.png')
    # init input data
    prompt = [x_min, y_min, x_max, y_max]
    inputs = processor(image, input_boxes=[[prompt]], return_tensors='pt')
    # make prediction
    outputs = model(pixel_values=inputs['pixel_values'].to(device),
                    input_boxes=inputs['input_boxes'].to(device),
                    multimask_output=False)
    prob_map = torch.sigmoid(outputs.pred_masks.squeeze()).cpu().detach()
    pred_mask = (prob_map > threshold).float().numpy()
    # visualize results
    plt.figure(figsize=(8, 8))
    plt.imshow(prob_map.numpy(), cmap='jet', interpolation='nearest')
    plt.axis('off')
    plt.tight_layout()
    plt.savefig('prob.png', bbox_inches='tight', pad_inches=0)
    plt.close()
    # post-processing
    ret_image = Image.open('image.png')
    ret_pred = (Image.open('image.png'), [(pred_mask, 'Sidewalks')])
    ret_prob = Image.open('prob.png')
    return ret_image, ret_pred, ret_prob

def segment_image_with_guidance(image, threshold, offset, x_min, y_min, x_max, y_max):
    # tolerate TIFF image input
    image['background'].save('image.png')
    # init input data
    prompt = [x_min, y_min, x_max, y_max]
    img = Image.open('image.png').convert('RGB')
    inputs = processor(img, input_boxes=[[prompt]], return_tensors='pt')
    # make prediction
    outputs = model(pixel_values=inputs['pixel_values'].to(device),
                    input_boxes=inputs['input_boxes'].to(device),
                    multimask_output=False)
    prob_map = torch.sigmoid(outputs.pred_masks.squeeze()).cpu().detach()
    # perform mask guidance
    guidance_mask = (np.max(np.array(image['layers'][0]), axis=2) != 0).astype(float)
    enhance_map = prob_map.numpy() + offset * guidance_mask
    pred_mask = (enhance_map > threshold).astype(float)
    # visualize results
    plt.figure(figsize=(8, 8))
    plt.imshow(enhance_map, cmap='jet', interpolation='nearest')
    plt.axis('off')
    plt.tight_layout()
    plt.savefig('prob.png', bbox_inches='tight', pad_inches=0)
    plt.close()
    # post-processing
    regions = [(guidance_mask, 'Guidance'), (pred_mask, 'Sidewalks')]
    return (image['background'], regions), Image.open('prob.png')

def segment_image_with_prompt(image, threshold, x_min, y_min, x_max, y_max):
    # tolerate TIFF image input
    image['background'].save('image.png')
    # init input data
    img = Image.open('image.png').convert('RGB')
    mask = (np.max(np.array(image['layers'][0]), axis=2) != 0)
    mask_prompt = to_tensor(mask).float()
    box_prompt = [[[x_min, y_min, x_max, y_max]]]
    inputs = processor(img, input_boxes=box_prompt,
                       input_masks=mask_prompt, return_tensors='pt')
    # make prediction
    outputs = model(pixel_values=inputs['pixel_values'].to(device),
                    input_boxes=inputs['input_boxes'].to(device),
                    input_masks=mask_prompt.to(device),
                    multimask_output=False)
    prob_map = torch.sigmoid(outputs.pred_masks.squeeze()).cpu().detach()
    pred_mask = (prob_map > threshold).float().numpy()
    # visualize results
    plt.figure(figsize=(8, 8))
    plt.imshow(prob_map.numpy(), cmap='jet', interpolation='nearest')
    plt.axis('off')
    plt.tight_layout()
    plt.savefig('prob.png', bbox_inches='tight', pad_inches=0)
    plt.close()
    # post-processing
    regions = [(mask, 'Prompt'), (pred_mask, 'Sidewalks')]
    return (image['background'], regions), Image.open('prob.png')

with gr.Blocks() as demo:
    with gr.Tab('Baseline'):
        with gr.Row():
            with gr.Column():
                t1_input = gr.Image(type='pil', label='Input Image')
                with gr.Row():
                    t1_x_min = gr.Textbox(value=0, label='x_min')
                    t1_y_min = gr.Textbox(value=0, label='y_min')
                    t1_x_max = gr.Textbox(value=256, label='x_max')
                    t1_y_max = gr.Textbox(value=256, label='y_max')
                t1_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='Prediction Threshold')
                t1_segment = gr.Button('Segment')
            with gr.Column():
                t1_pred = gr.AnnotatedImage(color_map={'Sidewalks': '#0000FF'}, label='Prediction')
            with gr.Column():
                t1_prob_map = gr.Image(type='pil', label='Probability Map')
    with gr.Tab('Mask Guidance (Best)'):
        with gr.Row():
            with gr.Column():
                t2_input = gr.ImageEditor(type='pil', crop_size='1:1', label='Input Image',
                                          brush=gr.Brush(default_size='5', color_mode='fixed'),
                                          sources=['upload'], transforms=[])
                with gr.Row():
                    t2_x_min = gr.Textbox(value=0, label='x_min')
                    t2_y_min = gr.Textbox(value=0, label='y_min')
                    t2_x_max = gr.Textbox(value=256, label='x_max')
                    t2_y_max = gr.Textbox(value=256, label='y_max')
                t2_thresh = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='Prediction Threshold')
                t2_offset = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.4, label='Guidance Offset')
                t2_segment = gr.Button('Segment')
            with gr.Column():
                t2_pred = gr.AnnotatedImage(color_map={'Guidance': '#FF0000', 'Sidewalks': '#0000FF'}, label='Prediction')
            with gr.Column():
                t2_prob_map = gr.Image(type='pil', label='Probability Map')
    with gr.Tab('Mask Prompt'):
        with gr.Row():
            with gr.Column():
                t3_input = gr.ImageEditor(type='pil', crop_size='1:1', label='Input Image',
                                          brush=gr.Brush(default_size='5', color_mode='fixed'),
                                          sources=['upload'], transforms=[])
                with gr.Row():
                    t3_x_min = gr.Textbox(value=0, label='x_min')
                    t3_y_min = gr.Textbox(value=0, label='y_min')
                    t3_x_max = gr.Textbox(value=256, label='x_max')
                    t3_y_max = gr.Textbox(value=256, label='y_max')
                t3_thresh = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='Prediction Threshold')
                t3_segment = gr.Button('Segment')
            with gr.Column():
                t3_pred = gr.AnnotatedImage(color_map={'Prompt': '#FF0000', 'Sidewalks': '#0000FF'}, label='Prediction')
            with gr.Column():
                t3_prob_map = gr.Image(type='pil', label='Probability Map')
    t1_segment.click(
        segment_image, 
        inputs=[t1_input, t1_slider, t1_x_min, t1_y_min, t1_x_max, t1_y_max], 
        outputs=[t1_input, t1_pred, t1_prob_map]
    )
    t2_segment.click(
        segment_image_with_guidance, 
        inputs=[t2_input, t2_thresh, t2_offset, t2_x_min, t2_y_min, t2_x_max, t2_y_max], 
        outputs=[t2_pred, t2_prob_map]
    )
    t3_segment.click(
        segment_image_with_prompt, 
        inputs=[t3_input, t3_thresh, t3_x_min, t3_y_min, t3_x_max, t3_y_max], 
        outputs=[t3_pred, t3_prob_map]
    )
demo.launch(debug=True, show_error=True)