File size: 5,382 Bytes
d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 561f8a4 eec7921 561f8a4 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from typing import List
import gradio as gr
import numpy as np
import pandas as pd
_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
_METRICS = ["MCC", "F1", "ACC"]
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
_DATASETS = list(set(_ORIGINAL_DF["Dataset"]))
_BIBTEX = """@article{DallaTorre2023TheNT,
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot},
journal={bioRxiv},
year={2023},
url={https://api.semanticscholar.org/CorpusID:255943445}
}
""" # noqa
_LAST_UPDATED = "Aug 28, 2023"
banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' # noqa
_INTRODUCTION_TEXT = "The π€ Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks with a standardized evaluation protocole." # noqa
def retrieve_array_from_text(text):
return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")
def format_number(x):
return float(f"{x:.3}")
def get_dataset(
tasks: List[str], target_metric: str = "MCC", aggregation_method: str = "mean"
):
aggr_fn = getattr(np, aggregation_method)
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
scores = scores.apply(format_number)
df = _ORIGINAL_DF.drop(columns=_METRICS)
df["Score"] = scores
df = df.pivot(index="Model", columns="Dataset", values="Score")
df = df[tasks]
df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number)
columns = list(df.columns.values)
columns.sort()
df = df[columns]
df.reset_index(inplace=True)
df = df.rename(columns={"index": "Model"})
df = df.sort_values(by=["All Tasks"], ascending=False)
leaderboard_table = gr.components.Dataframe.update(
value=df,
# datatype=TYPES,
max_rows=None,
interactive=False,
visible=True,
)
return leaderboard_table
with gr.Blocks() as demo:
with gr.Row():
gr.Image(banner_url, height=160, scale=1)
gr.Textbox(_INTRODUCTION_TEXT, scale=5)
with gr.Row():
metric_choice = gr.Dropdown(
choices=_METRICS,
value="MCC",
label="Metric displayed.",
)
aggr_choice = gr.Dropdown(
choices=_AGGREGATION_METHODS,
value="mean",
label="Aggregation used over 10-folds.",
)
with gr.Row():
selected_tasks = gr.CheckboxGroup(
choices=_DATASETS, value=_DATASETS, label="Tasks", info="Downstream tasks."
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
dataframe = gr.components.Dataframe(
elem_id="leaderboard-table",
)
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown("Hey hey hey", elem_classes="markdown-text")
# with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table",
# id=2):
# with gr.Column():
# gr.Markdown("# βοΈβ¨ Request results for a new model here!",
# elem_classes="markdown-text")
# with gr.Column():
# gr.Markdown("Select a dataset:", elem_classes="markdown-text")
# with gr.Column():
# model_name_textbox = gr.Textbox(
# label="Model name (user_name/model_name)")
# chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset",
# visible=False, value=True,
# interactive=False)
# with gr.Column():
# mdw_submission_result = gr.Markdown()
# btn_submitt = gr.Button(value="π Request")
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=_BIBTEX,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
).style(show_copy_button=True)
selected_tasks.change(
get_dataset,
inputs=[selected_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
metric_choice.change(
get_dataset,
inputs=[selected_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
aggr_choice.change(
get_dataset,
inputs=[selected_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
demo.load(
fn=get_dataset,
inputs=[selected_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
demo.launch()
|