File size: 5,382 Bytes
d0b5dce
eec7921
 
 
d0b5dce
eec7921
d0b5dce
 
 
 
eec7921
 
561f8a4
 
eec7921
 
 
 
561f8a4
d0b5dce
eec7921
 
d0b5dce
eec7921
d0b5dce
eec7921
 
 
d0b5dce
eec7921
 
 
d0b5dce
eec7921
 
d0b5dce
 
 
eec7921
 
 
 
d0b5dce
 
 
eec7921
d0b5dce
eec7921
 
 
 
d0b5dce
 
eec7921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b5dce
eec7921
 
 
 
d0b5dce
eec7921
 
 
 
 
 
d0b5dce
eec7921
d0b5dce
eec7921
 
d0b5dce
 
 
eec7921
 
d0b5dce
eec7921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b5dce
 
eec7921
 
 
 
d0b5dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec7921
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from typing import List

import gradio as gr
import numpy as np
import pandas as pd

_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
_METRICS = ["MCC", "F1", "ACC"]
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
_DATASETS = list(set(_ORIGINAL_DF["Dataset"]))

_BIBTEX = """@article{DallaTorre2023TheNT,
  title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
  author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot},
  journal={bioRxiv},
  year={2023},
  url={https://api.semanticscholar.org/CorpusID:255943445}
}
"""  # noqa
_LAST_UPDATED = "Aug 28, 2023"

banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'  # noqa

_INTRODUCTION_TEXT = "The πŸ€— Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks with a standardized evaluation protocole."  # noqa


def retrieve_array_from_text(text):
    return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")


def format_number(x):
    return float(f"{x:.3}")


def get_dataset(
    tasks: List[str], target_metric: str = "MCC", aggregation_method: str = "mean"
):

    aggr_fn = getattr(np, aggregation_method)
    scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
    scores = scores.apply(format_number)
    df = _ORIGINAL_DF.drop(columns=_METRICS)
    df["Score"] = scores
    df = df.pivot(index="Model", columns="Dataset", values="Score")
    df = df[tasks]
    df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number)
    columns = list(df.columns.values)
    columns.sort()
    df = df[columns]
    df.reset_index(inplace=True)
    df = df.rename(columns={"index": "Model"})
    df = df.sort_values(by=["All Tasks"], ascending=False)

    leaderboard_table = gr.components.Dataframe.update(
        value=df,
        # datatype=TYPES,
        max_rows=None,
        interactive=False,
        visible=True,
    )
    return leaderboard_table


with gr.Blocks() as demo:
    with gr.Row():
        gr.Image(banner_url, height=160, scale=1)
        gr.Textbox(_INTRODUCTION_TEXT, scale=5)

    with gr.Row():
        metric_choice = gr.Dropdown(
            choices=_METRICS,
            value="MCC",
            label="Metric displayed.",
        )
        aggr_choice = gr.Dropdown(
            choices=_AGGREGATION_METHODS,
            value="mean",
            label="Aggregation used over 10-folds.",
        )

    with gr.Row():
        selected_tasks = gr.CheckboxGroup(
            choices=_DATASETS, value=_DATASETS, label="Tasks", info="Downstream tasks."
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            dataframe = gr.components.Dataframe(
                elem_id="leaderboard-table",
            )

        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown("Hey hey hey", elem_classes="markdown-text")

        # with gr.TabItem("βœ‰οΈβœ¨ Request a model here!", elem_id="od-benchmark-tab-table",
        #                 id=2):
        #     with gr.Column():
        #         gr.Markdown("# βœ‰οΈβœ¨ Request results for a new model here!",
        #                     elem_classes="markdown-text")
        #     with gr.Column():
        #         gr.Markdown("Select a dataset:", elem_classes="markdown-text")
        #         with gr.Column():
        #             model_name_textbox = gr.Textbox(
        #                 label="Model name (user_name/model_name)")
        #             chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset",
        #                                        visible=False, value=True,
        #                                        interactive=False)
        #         with gr.Column():
        #             mdw_submission_result = gr.Markdown()
        #             btn_submitt = gr.Button(value="πŸš€ Request")

    gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=_BIBTEX,
                lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
            ).style(show_copy_button=True)

    selected_tasks.change(
        get_dataset,
        inputs=[selected_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    metric_choice.change(
        get_dataset,
        inputs=[selected_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    aggr_choice.change(
        get_dataset,
        inputs=[selected_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    demo.load(
        fn=get_dataset,
        inputs=[selected_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )

demo.launch()