File size: 20,177 Bytes
f6f97d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
from typing import List, Dict
import pandas as pd
import recognizers_suite
from recognizers_suite import Culture
import re
import unicodedata
from fuzzywuzzy import fuzz

from utils.sql.extraction_from_sql import *
from utils.sql.all_keywords import ALL_KEY_WORDS

culture = Culture.English


def str_normalize(user_input, recognition_types=None):
    """A string normalizer which recognize and normalize value based on recognizers_suite"""
    user_input = str(user_input)
    user_input = user_input.replace("\\n", "; ")

    def replace_by_idx_pairs(orig_str, strs_to_replace, idx_pairs):
        assert len(strs_to_replace) == len(idx_pairs)
        last_end = 0
        to_concat = []
        for idx_pair, str_to_replace in zip(idx_pairs, strs_to_replace):
            to_concat.append(orig_str[last_end:idx_pair[0]])
            to_concat.append(str_to_replace)
            last_end = idx_pair[1]
        to_concat.append(orig_str[last_end:])
        return ''.join(to_concat)

    if recognition_types is None:
        recognition_types = ["datetime",
                             "number",
                             # "ordinal",
                             # "percentage",
                             # "age",
                             # "currency",
                             # "dimension",
                             # "temperature",
                             ]

    for recognition_type in recognition_types:
        if re.match("\d+/\d+", user_input):
            # avoid calculating str as 1991/92
            continue
        recognized_list = getattr(recognizers_suite, "recognize_{}".format(recognition_type))(user_input,
                                                                                              culture)  # may match multiple parts
        strs_to_replace = []
        idx_pairs = []
        for recognized in recognized_list:
            if not recognition_type == 'datetime':
                recognized_value = recognized.resolution['value']
                if str(recognized_value).startswith("P"):
                    # if the datetime is a period:
                    continue
                else:
                    strs_to_replace.append(recognized_value)
                    idx_pairs.append((recognized.start, recognized.end + 1))
            else:
                if recognized.resolution:  # in some cases, this variable could be none.
                    if len(recognized.resolution['values']) == 1:
                        strs_to_replace.append(
                            recognized.resolution['values'][0]['timex'])  # We use timex as normalization
                        idx_pairs.append((recognized.start, recognized.end + 1))

        if len(strs_to_replace) > 0:
            user_input = replace_by_idx_pairs(user_input, strs_to_replace, idx_pairs)

    if re.match("(.*)-(.*)-(.*) 00:00:00", user_input):
        user_input = user_input[:-len("00:00:00") - 1]
        # '2008-04-13 00:00:00' -> '2008-04-13'
    return user_input


def prepare_df_for_neuraldb_from_table(table: Dict, add_row_id=True, normalize=True, lower_case=True):
    header, rows = table['header'], table['rows']
    if add_row_id and 'row_id' not in header:
        header = ["row_id"] + header
        rows = [["{}".format(i)] + row for i, row in enumerate(rows)]
    if normalize:
        df = convert_df_type(pd.DataFrame(data=rows, columns=header), lower_case=lower_case)
    else:
        df = pd.DataFrame(data=rows, columns=header)

    return df


def convert_df_type(df: pd.DataFrame, lower_case=True):
    """
    A simple converter of dataframe data type from string to int/float/datetime.
    """

    def get_table_content_in_column(table):
        if isinstance(table, pd.DataFrame):
            header = table.columns.tolist()
            rows = table.values.tolist()
        else:
            # Standard table dict format
            header, rows = table['header'], table['rows']
        all_col_values = []
        for i in range(len(header)):
            one_col_values = []
            for _row in rows:
                one_col_values.append(_row[i])
            all_col_values.append(one_col_values)
        return all_col_values

    # Rename empty columns
    new_columns = []
    for idx, header in enumerate(df.columns):
        if header == '':
            new_columns.append('FilledColumnName')  # Fixme: give it a better name when all finished!
        else:
            new_columns.append(header)
    df.columns = new_columns

    # Rename duplicate columns
    new_columns = []
    for idx, header in enumerate(df.columns):
        if header in new_columns:
            new_header, suffix = header, 2
            while new_header in new_columns:
                new_header = header + '_' + str(suffix)
                suffix += 1
            new_columns.append(new_header)
        else:
            new_columns.append(header)
    df.columns = new_columns

    # Recognize null values like "-"
    null_tokens = ['', '-', '/']
    for header in df.columns:
        df[header] = df[header].map(lambda x: str(None) if x in null_tokens else x)

    # Convert the null values in digit column to "NaN"
    all_col_values = get_table_content_in_column(df)
    for col_i, one_col_values in enumerate(all_col_values):
        all_number_flag = True
        for row_i, cell_value in enumerate(one_col_values):
            try:
                float(cell_value)
            except Exception as e:
                if not cell_value in [str(None), str(None).lower()]:
                    # None or none
                    all_number_flag = False
        if all_number_flag:
            _header = df.columns[col_i]
            df[_header] = df[_header].map(lambda x: "NaN" if x in [str(None), str(None).lower()] else x)

    # Normalize cell values.
    for header in df.columns:
        df[header] = df[header].map(lambda x: str_normalize(x))

    # Strip the mis-added "01-01 00:00:00"
    all_col_values = get_table_content_in_column(df)
    for col_i, one_col_values in enumerate(all_col_values):
        all_with_00_00_00 = True
        all_with_01_00_00_00 = True
        all_with_01_01_00_00_00 = True
        for row_i, cell_value in enumerate(one_col_values):
            if not str(cell_value).endswith(" 00:00:00"):
                all_with_00_00_00 = False
            if not str(cell_value).endswith("-01 00:00:00"):
                all_with_01_00_00_00 = False
            if not str(cell_value).endswith("-01-01 00:00:00"):
                all_with_01_01_00_00_00 = False
        if all_with_01_01_00_00_00:
            _header = df.columns[col_i]
            df[_header] = df[_header].map(lambda x: x[:-len("-01-01 00:00:00")])
            continue

        if all_with_01_00_00_00:
            _header = df.columns[col_i]
            df[_header] = df[_header].map(lambda x: x[:-len("-01 00:00:00")])
            continue

        if all_with_00_00_00:
            _header = df.columns[col_i]
            df[_header] = df[_header].map(lambda x: x[:-len(" 00:00:00")])
            continue

    # Do header and cell value lower case
    if lower_case:
        new_columns = []
        for header in df.columns:
            lower_header = str(header).lower()
            if lower_header in new_columns:
                new_header, suffix = lower_header, 2
                while new_header in new_columns:
                    new_header = lower_header + '-' + str(suffix)
                    suffix += 1
                new_columns.append(new_header)
            else:
                new_columns.append(lower_header)
        df.columns = new_columns
        for header in df.columns:
            # df[header] = df[header].map(lambda x: str(x).lower())
            df[header] = df[header].map(lambda x: str(x).lower().strip())

    # Recognize header type
    for header in df.columns:

        float_able = False
        int_able = False
        datetime_able = False

        # Recognize int & float type
        try:
            df[header].astype("float")
            float_able = True
        except:
            pass

        if float_able:
            try:
                if all(df[header].astype("float") == df[header].astype(int)):
                    int_able = True
            except:
                pass

        if float_able:
            if int_able:
                df[header] = df[header].astype(int)
            else:
                df[header] = df[header].astype(float)

        # Recognize datetime type
        try:
            df[header].astype("datetime64")
            datetime_able = True
        except:
            pass

        if datetime_able:
            df[header] = df[header].astype("datetime64")

    return df


def normalize(x):
    """ Normalize string. """
    # Copied from WikiTableQuestions dataset official evaluator.
    if x is None:
        return None
    # Remove diacritics
    x = ''.join(c for c in unicodedata.normalize('NFKD', x)
                if unicodedata.category(c) != 'Mn')
    # Normalize quotes and dashes
    x = re.sub("[β€˜β€™Β΄`]", "'", x)
    x = re.sub("[β€œβ€]", "\"", x)
    x = re.sub("[β€β€‘β€’β€“β€”βˆ’]", "-", x)
    while True:
        old_x = x
        # Remove citations
        x = re.sub("((?<!^)\[[^\]]*\]|\[\d+\]|[‒♦†‑*#+])*$", "", x.strip())
        # Remove details in parenthesis
        x = re.sub("(?<!^)( \([^)]*\))*$", "", x.strip())
        # Remove outermost quotation mark
        x = re.sub('^"([^"]*)"$', r'\1', x.strip())
        if x == old_x:
            break
    # Remove final '.'
    if x and x[-1] == '.':
        x = x[:-1]
    # Collapse whitespaces and convert to lower case
    x = re.sub('\s+', ' ', x, flags=re.U).lower().strip()
    return x


def post_process_sql(sql_str, df, table_title=None, process_program_with_fuzzy_match_on_db=True, verbose=False):
    """Post process SQL: including basic fix and further fuzzy match on cell and SQL to process"""

    def basic_fix(sql_str, all_headers, table_title=None):
        def finditer(sub_str: str, mother_str: str):
            result = []
            start_index = 0
            while True:
                start_index = mother_str.find(sub_str, start_index, -1)
                if start_index == -1:
                    break
                end_idx = start_index + len(sub_str)
                result.append((start_index, end_idx))
                start_index = end_idx
            return result

        if table_title:
            sql_str = sql_str.replace("FROM " + table_title, "FROM w")
            sql_str = sql_str.replace("FROM " + table_title.lower(), "FROM w")

        """Case 1: Fix the `` missing. """
        # Remove the null header.
        while '' in all_headers:
            all_headers.remove('')

        # Remove the '\n' in header.
        # This is because the WikiTQ won't actually show the str in two lines,
        # they use '\n' to mean that, and display it in the same line when print.
        sql_str = sql_str.replace("\\n", "\n")
        sql_str = sql_str.replace("\n", "\\n")

        # Add `` in SQL.

        all_headers.sort(key=lambda x: len(x), reverse=True)
        have_matched = [0 for i in range(len(sql_str))]

        # match quotation
        idx_s_single_quotation = [_ for _ in range(1, len(sql_str)) if
                                  sql_str[_] in ["\'"] and sql_str[_ - 1] not in ["\'"]]
        idx_s_double_quotation = [_ for _ in range(1, len(sql_str)) if
                                  sql_str[_] in ["\""] and sql_str[_ - 1] not in ["\""]]
        for idx_s in [idx_s_single_quotation, idx_s_double_quotation]:
            if len(idx_s) % 2 == 0:
                for idx in range(int(len(idx_s) / 2)):
                    start_idx = idx_s[idx * 2]
                    end_idx = idx_s[idx * 2 + 1]
                    have_matched[start_idx: end_idx] = [2 for _ in range(end_idx - start_idx)]

        # match headers
        for header in all_headers:
            if (header in sql_str) and (header not in ALL_KEY_WORDS):
                all_matched_of_this_header = finditer(header, sql_str)
                for matched_of_this_header in all_matched_of_this_header:
                    start_idx, end_idx = matched_of_this_header
                    if all(have_matched[start_idx: end_idx]) == 0 and (not sql_str[start_idx - 1] == "`") and (
                            not sql_str[end_idx] == "`"):
                        have_matched[start_idx: end_idx] = [1 for _ in range(end_idx - start_idx)]
                        # a bit ugly, but anyway.

        # re-compose sql from the matched idx.
        start_have_matched = [0] + have_matched
        end_have_matched = have_matched + [0]
        start_idx_s = [idx - 1 for idx in range(1, len(start_have_matched)) if
                       start_have_matched[idx - 1] == 0 and start_have_matched[idx] == 1]
        end_idx_s = [idx for idx in range(len(end_have_matched) - 1) if
                     end_have_matched[idx] == 1 and end_have_matched[idx + 1] == 0]
        assert len(start_idx_s) == len(end_idx_s)
        spans = []
        current_idx = 0
        for start_idx, end_idx in zip(start_idx_s, end_idx_s):
            spans.append(sql_str[current_idx:start_idx])
            spans.append(sql_str[start_idx:end_idx + 1])
            current_idx = end_idx + 1
        spans.append(sql_str[current_idx:])
        sql_str = '`'.join(spans)

        return sql_str

    def fuzzy_match_process(sql_str, df, verbose=False):
        """
        Post-process SQL by fuzzy matching value with table contents.
        """

        def _get_matched_cells(value_str, df, fuzz_threshold=70):
            """
            Get matched table cells with value token.
            """
            matched_cells = []
            for row_id, row in df.iterrows():
                for cell in row:
                    cell = str(cell)
                    fuzz_score = fuzz.ratio(value_str, cell)
                    if fuzz_score == 100:
                        matched_cells = [(cell, fuzz_score)]
                        return matched_cells
                    if fuzz_score >= fuzz_threshold:
                        matched_cells.append((cell, fuzz_score))

            matched_cells = sorted(matched_cells, key=lambda x: x[1], reverse=True)
            return matched_cells

        def _check_valid_fuzzy_match(value_str, matched_cell):
            """
            Check if the fuzzy match is valid, now considering:
            1. The number/date should not be disturbed, but adding new number or deleting number is valid.
            """
            number_pattern = "[+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?"
            numbers_in_value = re.findall(number_pattern, value_str)
            numbers_in_matched_cell = re.findall(number_pattern, matched_cell)
            try:
                numbers_in_value = [float(num.replace(',', '')) for num in numbers_in_value]
            except:
                print(f"Can't convert number string {numbers_in_value} into float in _check_valid_fuzzy_match().")
            try:
                numbers_in_matched_cell = [float(num.replace(',', '')) for num in numbers_in_matched_cell]
            except:
                print(
                    f"Can't convert number string {numbers_in_matched_cell} into float in _check_valid_fuzzy_match().")
            numbers_in_value = set(numbers_in_value)
            numbers_in_matched_cell = set(numbers_in_matched_cell)

            if numbers_in_value.issubset(numbers_in_matched_cell) or numbers_in_matched_cell.issubset(numbers_in_value):
                return True
            else:
                return False

        # Drop trailing '\n```', a pattern that may appear in Codex SQL generation
        sql_str = sql_str.rstrip('```').rstrip('\n')

        # Replace QA module with placeholder
        qa_pattern = "QA\(.+?;.*?`.+?`.*?\)"
        qas = re.findall(qa_pattern, sql_str)
        for idx, qa in enumerate(qas):
            sql_str = sql_str.replace(qa, f"placeholder{idx}")

        # Parse and replace SQL value with table contents
        sql_tokens = tokenize(sql_str)
        sql_template_tokens = extract_partial_template_from_sql(sql_str)
        # Fix 'between' keyword bug in parsing templates
        fixed_sql_template_tokens = []
        sql_tok_bias = 0
        for idx, sql_templ_tok in enumerate(sql_template_tokens):
            sql_tok = sql_tokens[idx + sql_tok_bias]
            if sql_tok == 'between' and sql_templ_tok == '[WHERE_OP]':
                fixed_sql_template_tokens.extend(['[WHERE_OP]', '[VALUE]', 'and'])
                sql_tok_bias += 2  # pass '[VALUE]', 'and'
            else:
                fixed_sql_template_tokens.append(sql_templ_tok)
        sql_template_tokens = fixed_sql_template_tokens
        for idx, tok in enumerate(sql_tokens):
            if tok in ALL_KEY_WORDS:
                sql_tokens[idx] = tok.upper()

        if verbose:
            print(sql_tokens)
            print(sql_template_tokens)

        assert len(sql_tokens) == len(sql_template_tokens)
        value_indices = [idx for idx in range(len(sql_template_tokens)) if sql_template_tokens[idx] == '[VALUE]']
        for value_idx in value_indices:
            # Skip the value if the where condition column is QA module
            if value_idx >= 2 and sql_tokens[value_idx - 2].startswith('placeholder'):
                continue
            value_str = sql_tokens[value_idx]
            # Drop \"\" for fuzzy match
            is_string = False
            if value_str[0] == "\"" and value_str[-1] == "\"":
                value_str = value_str[1:-1]
                is_string = True
            # If already fuzzy match, skip
            if value_str[0] == '%' or value_str[-1] == '%':
                continue
            value_str = value_str.lower()
            # Fuzzy Match
            matched_cells = _get_matched_cells(value_str, df)

            if verbose:
                print(matched_cells)

            new_value_str = value_str
            if matched_cells:
                # new_value_str = matched_cells[0][0]
                for matched_cell, fuzz_score in matched_cells:
                    if _check_valid_fuzzy_match(value_str, matched_cell):
                        new_value_str = matched_cell
                        if verbose and new_value_str != value_str:
                            print("\tfuzzy match replacing!", value_str, '->', matched_cell, f'fuzz_score:{fuzz_score}')
                        break
            if is_string:
                new_value_str = f"\"{new_value_str}\""
            sql_tokens[value_idx] = new_value_str
        # Compose new sql string
        # Clean column name in SQL since columns may have been tokenized in the postprocessing, e.g., (ppp) -> ( ppp )
        new_sql_str = ' '.join(sql_tokens)
        sql_columns = re.findall('`\s(.*?)\s`', new_sql_str)
        for sql_col in sql_columns:
            matched_columns = []
            for col in df.columns:
                score = fuzz.ratio(sql_col.lower(), col)
                if score == 100:
                    matched_columns = [(col, score)]
                    break
                if score >= 80:
                    matched_columns.append((col, score))
            matched_columns = sorted(matched_columns, key=lambda x: x[1], reverse=True)
            if matched_columns:
                matched_col = matched_columns[0][0]
                new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{matched_col}`")
            else:
                new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{sql_col}`")

        # Restore QA modules
        for idx, qa in enumerate(qas):
            new_sql_str = new_sql_str.replace(f"placeholder{idx}", qa)

        # Fix '<>' when composing the new sql
        new_sql_str = new_sql_str.replace('< >', '<>')

        return new_sql_str

    sql_str = basic_fix(sql_str, list(df.columns), table_title)

    if process_program_with_fuzzy_match_on_db:
        try:
            sql_str = fuzzy_match_process(sql_str, df, verbose)
        except:
            pass

    return sql_str