Spaces:
Runtime error
Runtime error
File size: 20,177 Bytes
f6f97d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
from typing import List, Dict
import pandas as pd
import recognizers_suite
from recognizers_suite import Culture
import re
import unicodedata
from fuzzywuzzy import fuzz
from utils.sql.extraction_from_sql import *
from utils.sql.all_keywords import ALL_KEY_WORDS
culture = Culture.English
def str_normalize(user_input, recognition_types=None):
"""A string normalizer which recognize and normalize value based on recognizers_suite"""
user_input = str(user_input)
user_input = user_input.replace("\\n", "; ")
def replace_by_idx_pairs(orig_str, strs_to_replace, idx_pairs):
assert len(strs_to_replace) == len(idx_pairs)
last_end = 0
to_concat = []
for idx_pair, str_to_replace in zip(idx_pairs, strs_to_replace):
to_concat.append(orig_str[last_end:idx_pair[0]])
to_concat.append(str_to_replace)
last_end = idx_pair[1]
to_concat.append(orig_str[last_end:])
return ''.join(to_concat)
if recognition_types is None:
recognition_types = ["datetime",
"number",
# "ordinal",
# "percentage",
# "age",
# "currency",
# "dimension",
# "temperature",
]
for recognition_type in recognition_types:
if re.match("\d+/\d+", user_input):
# avoid calculating str as 1991/92
continue
recognized_list = getattr(recognizers_suite, "recognize_{}".format(recognition_type))(user_input,
culture) # may match multiple parts
strs_to_replace = []
idx_pairs = []
for recognized in recognized_list:
if not recognition_type == 'datetime':
recognized_value = recognized.resolution['value']
if str(recognized_value).startswith("P"):
# if the datetime is a period:
continue
else:
strs_to_replace.append(recognized_value)
idx_pairs.append((recognized.start, recognized.end + 1))
else:
if recognized.resolution: # in some cases, this variable could be none.
if len(recognized.resolution['values']) == 1:
strs_to_replace.append(
recognized.resolution['values'][0]['timex']) # We use timex as normalization
idx_pairs.append((recognized.start, recognized.end + 1))
if len(strs_to_replace) > 0:
user_input = replace_by_idx_pairs(user_input, strs_to_replace, idx_pairs)
if re.match("(.*)-(.*)-(.*) 00:00:00", user_input):
user_input = user_input[:-len("00:00:00") - 1]
# '2008-04-13 00:00:00' -> '2008-04-13'
return user_input
def prepare_df_for_neuraldb_from_table(table: Dict, add_row_id=True, normalize=True, lower_case=True):
header, rows = table['header'], table['rows']
if add_row_id and 'row_id' not in header:
header = ["row_id"] + header
rows = [["{}".format(i)] + row for i, row in enumerate(rows)]
if normalize:
df = convert_df_type(pd.DataFrame(data=rows, columns=header), lower_case=lower_case)
else:
df = pd.DataFrame(data=rows, columns=header)
return df
def convert_df_type(df: pd.DataFrame, lower_case=True):
"""
A simple converter of dataframe data type from string to int/float/datetime.
"""
def get_table_content_in_column(table):
if isinstance(table, pd.DataFrame):
header = table.columns.tolist()
rows = table.values.tolist()
else:
# Standard table dict format
header, rows = table['header'], table['rows']
all_col_values = []
for i in range(len(header)):
one_col_values = []
for _row in rows:
one_col_values.append(_row[i])
all_col_values.append(one_col_values)
return all_col_values
# Rename empty columns
new_columns = []
for idx, header in enumerate(df.columns):
if header == '':
new_columns.append('FilledColumnName') # Fixme: give it a better name when all finished!
else:
new_columns.append(header)
df.columns = new_columns
# Rename duplicate columns
new_columns = []
for idx, header in enumerate(df.columns):
if header in new_columns:
new_header, suffix = header, 2
while new_header in new_columns:
new_header = header + '_' + str(suffix)
suffix += 1
new_columns.append(new_header)
else:
new_columns.append(header)
df.columns = new_columns
# Recognize null values like "-"
null_tokens = ['', '-', '/']
for header in df.columns:
df[header] = df[header].map(lambda x: str(None) if x in null_tokens else x)
# Convert the null values in digit column to "NaN"
all_col_values = get_table_content_in_column(df)
for col_i, one_col_values in enumerate(all_col_values):
all_number_flag = True
for row_i, cell_value in enumerate(one_col_values):
try:
float(cell_value)
except Exception as e:
if not cell_value in [str(None), str(None).lower()]:
# None or none
all_number_flag = False
if all_number_flag:
_header = df.columns[col_i]
df[_header] = df[_header].map(lambda x: "NaN" if x in [str(None), str(None).lower()] else x)
# Normalize cell values.
for header in df.columns:
df[header] = df[header].map(lambda x: str_normalize(x))
# Strip the mis-added "01-01 00:00:00"
all_col_values = get_table_content_in_column(df)
for col_i, one_col_values in enumerate(all_col_values):
all_with_00_00_00 = True
all_with_01_00_00_00 = True
all_with_01_01_00_00_00 = True
for row_i, cell_value in enumerate(one_col_values):
if not str(cell_value).endswith(" 00:00:00"):
all_with_00_00_00 = False
if not str(cell_value).endswith("-01 00:00:00"):
all_with_01_00_00_00 = False
if not str(cell_value).endswith("-01-01 00:00:00"):
all_with_01_01_00_00_00 = False
if all_with_01_01_00_00_00:
_header = df.columns[col_i]
df[_header] = df[_header].map(lambda x: x[:-len("-01-01 00:00:00")])
continue
if all_with_01_00_00_00:
_header = df.columns[col_i]
df[_header] = df[_header].map(lambda x: x[:-len("-01 00:00:00")])
continue
if all_with_00_00_00:
_header = df.columns[col_i]
df[_header] = df[_header].map(lambda x: x[:-len(" 00:00:00")])
continue
# Do header and cell value lower case
if lower_case:
new_columns = []
for header in df.columns:
lower_header = str(header).lower()
if lower_header in new_columns:
new_header, suffix = lower_header, 2
while new_header in new_columns:
new_header = lower_header + '-' + str(suffix)
suffix += 1
new_columns.append(new_header)
else:
new_columns.append(lower_header)
df.columns = new_columns
for header in df.columns:
# df[header] = df[header].map(lambda x: str(x).lower())
df[header] = df[header].map(lambda x: str(x).lower().strip())
# Recognize header type
for header in df.columns:
float_able = False
int_able = False
datetime_able = False
# Recognize int & float type
try:
df[header].astype("float")
float_able = True
except:
pass
if float_able:
try:
if all(df[header].astype("float") == df[header].astype(int)):
int_able = True
except:
pass
if float_able:
if int_able:
df[header] = df[header].astype(int)
else:
df[header] = df[header].astype(float)
# Recognize datetime type
try:
df[header].astype("datetime64")
datetime_able = True
except:
pass
if datetime_able:
df[header] = df[header].astype("datetime64")
return df
def normalize(x):
""" Normalize string. """
# Copied from WikiTableQuestions dataset official evaluator.
if x is None:
return None
# Remove diacritics
x = ''.join(c for c in unicodedata.normalize('NFKD', x)
if unicodedata.category(c) != 'Mn')
# Normalize quotes and dashes
x = re.sub("[ββΒ΄`]", "'", x)
x = re.sub("[ββ]", "\"", x)
x = re.sub("[ββββββ]", "-", x)
while True:
old_x = x
# Remove citations
x = re.sub("((?<!^)\[[^\]]*\]|\[\d+\]|[β’β¦β β‘*#+])*$", "", x.strip())
# Remove details in parenthesis
x = re.sub("(?<!^)( \([^)]*\))*$", "", x.strip())
# Remove outermost quotation mark
x = re.sub('^"([^"]*)"$', r'\1', x.strip())
if x == old_x:
break
# Remove final '.'
if x and x[-1] == '.':
x = x[:-1]
# Collapse whitespaces and convert to lower case
x = re.sub('\s+', ' ', x, flags=re.U).lower().strip()
return x
def post_process_sql(sql_str, df, table_title=None, process_program_with_fuzzy_match_on_db=True, verbose=False):
"""Post process SQL: including basic fix and further fuzzy match on cell and SQL to process"""
def basic_fix(sql_str, all_headers, table_title=None):
def finditer(sub_str: str, mother_str: str):
result = []
start_index = 0
while True:
start_index = mother_str.find(sub_str, start_index, -1)
if start_index == -1:
break
end_idx = start_index + len(sub_str)
result.append((start_index, end_idx))
start_index = end_idx
return result
if table_title:
sql_str = sql_str.replace("FROM " + table_title, "FROM w")
sql_str = sql_str.replace("FROM " + table_title.lower(), "FROM w")
"""Case 1: Fix the `` missing. """
# Remove the null header.
while '' in all_headers:
all_headers.remove('')
# Remove the '\n' in header.
# This is because the WikiTQ won't actually show the str in two lines,
# they use '\n' to mean that, and display it in the same line when print.
sql_str = sql_str.replace("\\n", "\n")
sql_str = sql_str.replace("\n", "\\n")
# Add `` in SQL.
all_headers.sort(key=lambda x: len(x), reverse=True)
have_matched = [0 for i in range(len(sql_str))]
# match quotation
idx_s_single_quotation = [_ for _ in range(1, len(sql_str)) if
sql_str[_] in ["\'"] and sql_str[_ - 1] not in ["\'"]]
idx_s_double_quotation = [_ for _ in range(1, len(sql_str)) if
sql_str[_] in ["\""] and sql_str[_ - 1] not in ["\""]]
for idx_s in [idx_s_single_quotation, idx_s_double_quotation]:
if len(idx_s) % 2 == 0:
for idx in range(int(len(idx_s) / 2)):
start_idx = idx_s[idx * 2]
end_idx = idx_s[idx * 2 + 1]
have_matched[start_idx: end_idx] = [2 for _ in range(end_idx - start_idx)]
# match headers
for header in all_headers:
if (header in sql_str) and (header not in ALL_KEY_WORDS):
all_matched_of_this_header = finditer(header, sql_str)
for matched_of_this_header in all_matched_of_this_header:
start_idx, end_idx = matched_of_this_header
if all(have_matched[start_idx: end_idx]) == 0 and (not sql_str[start_idx - 1] == "`") and (
not sql_str[end_idx] == "`"):
have_matched[start_idx: end_idx] = [1 for _ in range(end_idx - start_idx)]
# a bit ugly, but anyway.
# re-compose sql from the matched idx.
start_have_matched = [0] + have_matched
end_have_matched = have_matched + [0]
start_idx_s = [idx - 1 for idx in range(1, len(start_have_matched)) if
start_have_matched[idx - 1] == 0 and start_have_matched[idx] == 1]
end_idx_s = [idx for idx in range(len(end_have_matched) - 1) if
end_have_matched[idx] == 1 and end_have_matched[idx + 1] == 0]
assert len(start_idx_s) == len(end_idx_s)
spans = []
current_idx = 0
for start_idx, end_idx in zip(start_idx_s, end_idx_s):
spans.append(sql_str[current_idx:start_idx])
spans.append(sql_str[start_idx:end_idx + 1])
current_idx = end_idx + 1
spans.append(sql_str[current_idx:])
sql_str = '`'.join(spans)
return sql_str
def fuzzy_match_process(sql_str, df, verbose=False):
"""
Post-process SQL by fuzzy matching value with table contents.
"""
def _get_matched_cells(value_str, df, fuzz_threshold=70):
"""
Get matched table cells with value token.
"""
matched_cells = []
for row_id, row in df.iterrows():
for cell in row:
cell = str(cell)
fuzz_score = fuzz.ratio(value_str, cell)
if fuzz_score == 100:
matched_cells = [(cell, fuzz_score)]
return matched_cells
if fuzz_score >= fuzz_threshold:
matched_cells.append((cell, fuzz_score))
matched_cells = sorted(matched_cells, key=lambda x: x[1], reverse=True)
return matched_cells
def _check_valid_fuzzy_match(value_str, matched_cell):
"""
Check if the fuzzy match is valid, now considering:
1. The number/date should not be disturbed, but adding new number or deleting number is valid.
"""
number_pattern = "[+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?"
numbers_in_value = re.findall(number_pattern, value_str)
numbers_in_matched_cell = re.findall(number_pattern, matched_cell)
try:
numbers_in_value = [float(num.replace(',', '')) for num in numbers_in_value]
except:
print(f"Can't convert number string {numbers_in_value} into float in _check_valid_fuzzy_match().")
try:
numbers_in_matched_cell = [float(num.replace(',', '')) for num in numbers_in_matched_cell]
except:
print(
f"Can't convert number string {numbers_in_matched_cell} into float in _check_valid_fuzzy_match().")
numbers_in_value = set(numbers_in_value)
numbers_in_matched_cell = set(numbers_in_matched_cell)
if numbers_in_value.issubset(numbers_in_matched_cell) or numbers_in_matched_cell.issubset(numbers_in_value):
return True
else:
return False
# Drop trailing '\n```', a pattern that may appear in Codex SQL generation
sql_str = sql_str.rstrip('```').rstrip('\n')
# Replace QA module with placeholder
qa_pattern = "QA\(.+?;.*?`.+?`.*?\)"
qas = re.findall(qa_pattern, sql_str)
for idx, qa in enumerate(qas):
sql_str = sql_str.replace(qa, f"placeholder{idx}")
# Parse and replace SQL value with table contents
sql_tokens = tokenize(sql_str)
sql_template_tokens = extract_partial_template_from_sql(sql_str)
# Fix 'between' keyword bug in parsing templates
fixed_sql_template_tokens = []
sql_tok_bias = 0
for idx, sql_templ_tok in enumerate(sql_template_tokens):
sql_tok = sql_tokens[idx + sql_tok_bias]
if sql_tok == 'between' and sql_templ_tok == '[WHERE_OP]':
fixed_sql_template_tokens.extend(['[WHERE_OP]', '[VALUE]', 'and'])
sql_tok_bias += 2 # pass '[VALUE]', 'and'
else:
fixed_sql_template_tokens.append(sql_templ_tok)
sql_template_tokens = fixed_sql_template_tokens
for idx, tok in enumerate(sql_tokens):
if tok in ALL_KEY_WORDS:
sql_tokens[idx] = tok.upper()
if verbose:
print(sql_tokens)
print(sql_template_tokens)
assert len(sql_tokens) == len(sql_template_tokens)
value_indices = [idx for idx in range(len(sql_template_tokens)) if sql_template_tokens[idx] == '[VALUE]']
for value_idx in value_indices:
# Skip the value if the where condition column is QA module
if value_idx >= 2 and sql_tokens[value_idx - 2].startswith('placeholder'):
continue
value_str = sql_tokens[value_idx]
# Drop \"\" for fuzzy match
is_string = False
if value_str[0] == "\"" and value_str[-1] == "\"":
value_str = value_str[1:-1]
is_string = True
# If already fuzzy match, skip
if value_str[0] == '%' or value_str[-1] == '%':
continue
value_str = value_str.lower()
# Fuzzy Match
matched_cells = _get_matched_cells(value_str, df)
if verbose:
print(matched_cells)
new_value_str = value_str
if matched_cells:
# new_value_str = matched_cells[0][0]
for matched_cell, fuzz_score in matched_cells:
if _check_valid_fuzzy_match(value_str, matched_cell):
new_value_str = matched_cell
if verbose and new_value_str != value_str:
print("\tfuzzy match replacing!", value_str, '->', matched_cell, f'fuzz_score:{fuzz_score}')
break
if is_string:
new_value_str = f"\"{new_value_str}\""
sql_tokens[value_idx] = new_value_str
# Compose new sql string
# Clean column name in SQL since columns may have been tokenized in the postprocessing, e.g., (ppp) -> ( ppp )
new_sql_str = ' '.join(sql_tokens)
sql_columns = re.findall('`\s(.*?)\s`', new_sql_str)
for sql_col in sql_columns:
matched_columns = []
for col in df.columns:
score = fuzz.ratio(sql_col.lower(), col)
if score == 100:
matched_columns = [(col, score)]
break
if score >= 80:
matched_columns.append((col, score))
matched_columns = sorted(matched_columns, key=lambda x: x[1], reverse=True)
if matched_columns:
matched_col = matched_columns[0][0]
new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{matched_col}`")
else:
new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{sql_col}`")
# Restore QA modules
for idx, qa in enumerate(qas):
new_sql_str = new_sql_str.replace(f"placeholder{idx}", qa)
# Fix '<>' when composing the new sql
new_sql_str = new_sql_str.replace('< >', '<>')
return new_sql_str
sql_str = basic_fix(sql_str, list(df.columns), table_title)
if process_program_with_fuzzy_match_on_db:
try:
sql_str = fuzzy_match_process(sql_str, df, verbose)
except:
pass
return sql_str
|