File size: 11,330 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition

from collections import OrderedDict
from functools import partial

import torch
import torch.nn as nn
from timm.layers import trunc_normal_

from mmaudio.ext.synchformer import vit_helper


class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage """

    def __init__(self, cfg):
        super().__init__()
        self.img_size = cfg.DATA.TRAIN_CROP_SIZE
        self.patch_size = cfg.VIT.PATCH_SIZE
        self.in_chans = cfg.VIT.CHANNELS
        if cfg.TRAIN.DATASET == "Epickitchens":
            self.num_classes = [97, 300]
        else:
            self.num_classes = cfg.MODEL.NUM_CLASSES
        self.embed_dim = cfg.VIT.EMBED_DIM
        self.depth = cfg.VIT.DEPTH
        self.num_heads = cfg.VIT.NUM_HEADS
        self.mlp_ratio = cfg.VIT.MLP_RATIO
        self.qkv_bias = cfg.VIT.QKV_BIAS
        self.drop_rate = cfg.VIT.DROP
        self.drop_path_rate = cfg.VIT.DROP_PATH
        self.head_dropout = cfg.VIT.HEAD_DROPOUT
        self.video_input = cfg.VIT.VIDEO_INPUT
        self.temporal_resolution = cfg.VIT.TEMPORAL_RESOLUTION
        self.use_mlp = cfg.VIT.USE_MLP
        self.num_features = self.embed_dim
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.attn_drop_rate = cfg.VIT.ATTN_DROPOUT
        self.head_act = cfg.VIT.HEAD_ACT
        self.cfg = cfg

        # Patch Embedding
        self.patch_embed = vit_helper.PatchEmbed(img_size=224,
                                                 patch_size=self.patch_size,
                                                 in_chans=self.in_chans,
                                                 embed_dim=self.embed_dim)

        # 3D Patch Embedding
        self.patch_embed_3d = vit_helper.PatchEmbed3D(img_size=self.img_size,
                                                      temporal_resolution=self.temporal_resolution,
                                                      patch_size=self.patch_size,
                                                      in_chans=self.in_chans,
                                                      embed_dim=self.embed_dim,
                                                      z_block_size=self.cfg.VIT.PATCH_SIZE_TEMP)
        self.patch_embed_3d.proj.weight.data = torch.zeros_like(
            self.patch_embed_3d.proj.weight.data)

        # Number of patches
        if self.video_input:
            num_patches = self.patch_embed.num_patches * self.temporal_resolution
        else:
            num_patches = self.patch_embed.num_patches
        self.num_patches = num_patches

        # CLS token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        trunc_normal_(self.cls_token, std=.02)

        # Positional embedding
        self.pos_embed = nn.Parameter(
            torch.zeros(1, self.patch_embed.num_patches + 1, self.embed_dim))
        self.pos_drop = nn.Dropout(p=cfg.VIT.POS_DROPOUT)
        trunc_normal_(self.pos_embed, std=.02)

        if self.cfg.VIT.POS_EMBED == "joint":
            self.st_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.embed_dim))
            trunc_normal_(self.st_embed, std=.02)
        elif self.cfg.VIT.POS_EMBED == "separate":
            self.temp_embed = nn.Parameter(torch.zeros(1, self.temporal_resolution, self.embed_dim))

        # Layer Blocks
        dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)]
        if self.cfg.VIT.ATTN_LAYER == "divided":
            self.blocks = nn.ModuleList([
                vit_helper.DividedSpaceTimeBlock(
                    attn_type=cfg.VIT.ATTN_LAYER,
                    dim=self.embed_dim,
                    num_heads=self.num_heads,
                    mlp_ratio=self.mlp_ratio,
                    qkv_bias=self.qkv_bias,
                    drop=self.drop_rate,
                    attn_drop=self.attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                ) for i in range(self.depth)
            ])
        else:
            self.blocks = nn.ModuleList([
                vit_helper.Block(attn_type=cfg.VIT.ATTN_LAYER,
                                 dim=self.embed_dim,
                                 num_heads=self.num_heads,
                                 mlp_ratio=self.mlp_ratio,
                                 qkv_bias=self.qkv_bias,
                                 drop=self.drop_rate,
                                 attn_drop=self.attn_drop_rate,
                                 drop_path=dpr[i],
                                 norm_layer=norm_layer,
                                 use_original_code=self.cfg.VIT.USE_ORIGINAL_TRAJ_ATTN_CODE)
                for i in range(self.depth)
            ])
        self.norm = norm_layer(self.embed_dim)

        # MLP head
        if self.use_mlp:
            hidden_dim = self.embed_dim
            if self.head_act == 'tanh':
                # logging.info("Using TanH activation in MLP")
                act = nn.Tanh()
            elif self.head_act == 'gelu':
                # logging.info("Using GELU activation in MLP")
                act = nn.GELU()
            else:
                # logging.info("Using ReLU activation in MLP")
                act = nn.ReLU()
            self.pre_logits = nn.Sequential(
                OrderedDict([
                    ('fc', nn.Linear(self.embed_dim, hidden_dim)),
                    ('act', act),
                ]))
        else:
            self.pre_logits = nn.Identity()

        # Classifier Head
        self.head_drop = nn.Dropout(p=self.head_dropout)
        if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
            for a, i in enumerate(range(len(self.num_classes))):
                setattr(self, "head%d" % a, nn.Linear(self.embed_dim, self.num_classes[i]))
        else:
            self.head = nn.Linear(self.embed_dim,
                                  self.num_classes) if self.num_classes > 0 else nn.Identity()

        # Initialize weights
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        if self.cfg.VIT.POS_EMBED == "joint":
            return {'pos_embed', 'cls_token', 'st_embed'}
        else:
            return {'pos_embed', 'cls_token', 'temp_embed'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = (nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity())

    def forward_features(self, x):
        # if self.video_input:
        # x = x[0]
        B = x.shape[0]

        # Tokenize input
        # if self.cfg.VIT.PATCH_SIZE_TEMP > 1:
        # for simplicity of mapping between content dimensions (input x) and token dims (after patching)
        # we use the same trick as for AST (see modeling_ast.ASTModel.forward for the details):

        # apply patching on input
        x = self.patch_embed_3d(x)
        tok_mask = None

        # else:
        #     tok_mask = None
        #     # 2D tokenization
        #     if self.video_input:
        #         x = x.permute(0, 2, 1, 3, 4)
        #         (B, T, C, H, W) = x.shape
        #         x = x.reshape(B * T, C, H, W)

        #     x = self.patch_embed(x)

        #     if self.video_input:
        #         (B2, T2, D2) = x.shape
        #         x = x.reshape(B, T * T2, D2)

        # Append CLS token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        # if tok_mask is not None:
        #     # prepend 1(=keep) to the mask to account for the CLS token as well
        #     tok_mask = torch.cat((torch.ones_like(tok_mask[:, [0]]), tok_mask), dim=1)

        # Interpolate positinoal embeddings
        # if self.cfg.DATA.TRAIN_CROP_SIZE != 224:
        #     pos_embed = self.pos_embed
        #     N = pos_embed.shape[1] - 1
        #     npatch = int((x.size(1) - 1) / self.temporal_resolution)
        #     class_emb = pos_embed[:, 0]
        #     pos_embed = pos_embed[:, 1:]
        #     dim = x.shape[-1]
        #     pos_embed = torch.nn.functional.interpolate(
        #         pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
        #         scale_factor=math.sqrt(npatch / N),
        #         mode='bicubic',
        #     )
        #     pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        #     new_pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
        # else:
        new_pos_embed = self.pos_embed
        npatch = self.patch_embed.num_patches

        # Add positional embeddings to input
        if self.video_input:
            if self.cfg.VIT.POS_EMBED == "separate":
                cls_embed = self.pos_embed[:, 0, :].unsqueeze(1)
                tile_pos_embed = new_pos_embed[:, 1:, :].repeat(1, self.temporal_resolution, 1)
                tile_temporal_embed = self.temp_embed.repeat_interleave(npatch, 1)
                total_pos_embed = tile_pos_embed + tile_temporal_embed
                total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1)
                x = x + total_pos_embed
            elif self.cfg.VIT.POS_EMBED == "joint":
                x = x + self.st_embed
        else:
            # image input
            x = x + new_pos_embed

        # Apply positional dropout
        x = self.pos_drop(x)

        # Encoding using transformer layers
        for i, blk in enumerate(self.blocks):
            x = blk(x,
                    seq_len=npatch,
                    num_frames=self.temporal_resolution,
                    approx=self.cfg.VIT.APPROX_ATTN_TYPE,
                    num_landmarks=self.cfg.VIT.APPROX_ATTN_DIM,
                    tok_mask=tok_mask)

        ### v-iashin: I moved it to the forward pass
        # x = self.norm(x)[:, 0]
        # x = self.pre_logits(x)
        ###
        return x, tok_mask

    # def forward(self, x):
    #     x = self.forward_features(x)
    #     ### v-iashin: here. This should leave the same forward output as before
    #     x = self.norm(x)[:, 0]
    #     x = self.pre_logits(x)
    #     ###
    #     x = self.head_drop(x)
    #     if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
    #         output = []
    #         for head in range(len(self.num_classes)):
    #             x_out = getattr(self, "head%d" % head)(x)
    #             if not self.training:
    #                 x_out = torch.nn.functional.softmax(x_out, dim=-1)
    #             output.append(x_out)
    #         return output
    #     else:
    #         x = self.head(x)
    #         if not self.training:
    #             x = torch.nn.functional.softmax(x, dim=-1)
    #         return x