File size: 18,388 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import logging
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmaudio.ext.rotary_embeddings import compute_rope_rotations
from mmaudio.model.embeddings import TimestepEmbedder
from mmaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP
from mmaudio.model.transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock)

log = logging.getLogger()


@dataclass
class PreprocessedConditions:
    clip_f: torch.Tensor
    sync_f: torch.Tensor
    text_f: torch.Tensor
    clip_f_c: torch.Tensor
    text_f_c: torch.Tensor


# Partially from https://github.com/facebookresearch/DiT
class MMAudio(nn.Module):

    def __init__(self,
                 *,
                 latent_dim: int,
                 clip_dim: int,
                 sync_dim: int,
                 text_dim: int,
                 hidden_dim: int,
                 depth: int,
                 fused_depth: int,
                 num_heads: int,
                 mlp_ratio: float = 4.0,
                 latent_seq_len: int,
                 clip_seq_len: int,
                 sync_seq_len: int,
                 text_seq_len: int = 77,
                 latent_mean: Optional[torch.Tensor] = None,
                 latent_std: Optional[torch.Tensor] = None,
                 empty_string_feat: Optional[torch.Tensor] = None,
                 v2: bool = False) -> None:
        super().__init__()

        self.v2 = v2
        self.latent_dim = latent_dim
        self._latent_seq_len = latent_seq_len
        self._clip_seq_len = clip_seq_len
        self._sync_seq_len = sync_seq_len
        self._text_seq_len = text_seq_len
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads

        if v2:
            self.audio_input_proj = nn.Sequential(
                ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
                nn.SiLU(),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
            )

            self.clip_input_proj = nn.Sequential(
                nn.Linear(clip_dim, hidden_dim),
                nn.SiLU(),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
            )

            self.sync_input_proj = nn.Sequential(
                ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
                nn.SiLU(),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
            )

            self.text_input_proj = nn.Sequential(
                nn.Linear(text_dim, hidden_dim),
                nn.SiLU(),
                MLP(hidden_dim, hidden_dim * 4),
            )
        else:
            self.audio_input_proj = nn.Sequential(
                ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
                nn.SELU(),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
            )

            self.clip_input_proj = nn.Sequential(
                nn.Linear(clip_dim, hidden_dim),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
            )

            self.sync_input_proj = nn.Sequential(
                ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
                nn.SELU(),
                ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
            )

            self.text_input_proj = nn.Sequential(
                nn.Linear(text_dim, hidden_dim),
                MLP(hidden_dim, hidden_dim * 4),
            )

        self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim)
        self.text_cond_proj = nn.Linear(hidden_dim, hidden_dim)
        self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4)
        # each synchformer output segment has 8 feature frames
        self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim)))

        self.final_layer = FinalBlock(hidden_dim, latent_dim)

        if v2:
            self.t_embed = TimestepEmbedder(hidden_dim,
                                            frequency_embedding_size=hidden_dim,
                                            max_period=1)
        else:
            self.t_embed = TimestepEmbedder(hidden_dim,
                                            frequency_embedding_size=256,
                                            max_period=10000)
        self.joint_blocks = nn.ModuleList([
            JointBlock(hidden_dim,
                       num_heads,
                       mlp_ratio=mlp_ratio,
                       pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth)
        ])

        self.fused_blocks = nn.ModuleList([
            MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=3, padding=1)
            for i in range(fused_depth)
        ])

        if latent_mean is None:
            # these values are not meant to be used
            # if you don't provide mean/std here, we should load them later from a checkpoint
            assert latent_std is None
            latent_mean = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
            latent_std = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
        else:
            assert latent_std is not None
            assert latent_mean.numel() == latent_dim, f'{latent_mean.numel()=} != {latent_dim=}'
        if empty_string_feat is None:
            empty_string_feat = torch.zeros((text_seq_len, text_dim))
        self.latent_mean = nn.Parameter(latent_mean.view(1, 1, -1), requires_grad=False)
        self.latent_std = nn.Parameter(latent_std.view(1, 1, -1), requires_grad=False)

        self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False)
        self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True)
        self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True)

        self.initialize_weights()
        self.initialize_rotations()

    def initialize_rotations(self):
        base_freq = 1.0
        latent_rot = compute_rope_rotations(self._latent_seq_len,
                                            self.hidden_dim // self.num_heads,
                                            10000,
                                            freq_scaling=base_freq,
                                            device=self.device)
        clip_rot = compute_rope_rotations(self._clip_seq_len,
                                          self.hidden_dim // self.num_heads,
                                          10000,
                                          freq_scaling=base_freq * self._latent_seq_len /
                                          self._clip_seq_len,
                                          device=self.device)

        self.latent_rot = nn.Buffer(latent_rot, persistent=False)
        self.clip_rot = nn.Buffer(clip_rot, persistent=False)

    def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None:
        self._latent_seq_len = latent_seq_len
        self._clip_seq_len = clip_seq_len
        self._sync_seq_len = sync_seq_len
        self.initialize_rotations()

    def initialize_weights(self):

        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.joint_blocks:
            nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0)
            nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0)
            nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0)
        for block in self.fused_blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.conv.weight, 0)
        nn.init.constant_(self.final_layer.conv.bias, 0)

        # empty string feat shall be initialized by a CLIP encoder
        nn.init.constant_(self.sync_pos_emb, 0)
        nn.init.constant_(self.empty_clip_feat, 0)
        nn.init.constant_(self.empty_sync_feat, 0)

    def normalize(self, x: torch.Tensor) -> torch.Tensor:
        # return (x - self.latent_mean) / self.latent_std
        return x.sub_(self.latent_mean).div_(self.latent_std)

    def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
        # return x * self.latent_std + self.latent_mean
        return x.mul_(self.latent_std).add_(self.latent_mean)

    def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor,
                              text_f: torch.Tensor) -> PreprocessedConditions:
        """
        cache computations that do not depend on the latent/time step
        i.e., the features are reused over steps during inference
        """
        assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}'
        assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}'
        assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}'

        bs = clip_f.shape[0]

        # B * num_segments (24) * 8 * 768
        num_sync_segments = self._sync_seq_len // 8
        sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb
        sync_f = sync_f.flatten(1, 2)  # (B, VN, D)

        # extend vf to match x
        clip_f = self.clip_input_proj(clip_f)  # (B, VN, D)
        sync_f = self.sync_input_proj(sync_f)  # (B, VN, D)
        text_f = self.text_input_proj(text_f)  # (B, VN, D)

        # upsample the sync features to match the audio
        sync_f = sync_f.transpose(1, 2)  # (B, D, VN)
        sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact')
        sync_f = sync_f.transpose(1, 2)  # (B, N, D)

        # get conditional features from the clip side
        clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1))  # (B, D)
        text_f_c = self.text_cond_proj(text_f.mean(dim=1))  # (B, D)

        return PreprocessedConditions(clip_f=clip_f,
                                      sync_f=sync_f,
                                      text_f=text_f,
                                      clip_f_c=clip_f_c,
                                      text_f_c=text_f_c)

    def predict_flow(self, latent: torch.Tensor, t: torch.Tensor,
                     conditions: PreprocessedConditions) -> torch.Tensor:
        """
        for non-cacheable computations
        """
        assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}'

        clip_f = conditions.clip_f
        sync_f = conditions.sync_f
        text_f = conditions.text_f
        clip_f_c = conditions.clip_f_c
        text_f_c = conditions.text_f_c

        latent = self.audio_input_proj(latent)  # (B, N, D)
        global_c = self.global_cond_mlp(clip_f_c + text_f_c)  # (B, D)

        global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1)  # (B, D)
        extended_c = global_c + sync_f

        for block in self.joint_blocks:
            latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c,
                                           self.latent_rot, self.clip_rot)  # (B, N, D)

        for block in self.fused_blocks:
            latent = block(latent, extended_c, self.latent_rot)

        flow = self.final_layer(latent, global_c)  # (B, N, out_dim), remove t
        return flow

    def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor,
                text_f: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
        """
        latent: (B, N, C) 
        vf: (B, T, C_V)
        t: (B,)
        """
        conditions = self.preprocess_conditions(clip_f, sync_f, text_f)
        flow = self.predict_flow(latent, t, conditions)
        return flow

    def get_empty_string_sequence(self, bs: int) -> torch.Tensor:
        return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)

    def get_empty_clip_sequence(self, bs: int) -> torch.Tensor:
        return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1)

    def get_empty_sync_sequence(self, bs: int) -> torch.Tensor:
        return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1)

    def get_empty_conditions(
            self,
            bs: int,
            *,
            negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions:
        if negative_text_features is not None:
            empty_text = negative_text_features
        else:
            empty_text = self.get_empty_string_sequence(1)

        empty_clip = self.get_empty_clip_sequence(1)
        empty_sync = self.get_empty_sync_sequence(1)
        conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text)
        conditions.clip_f = conditions.clip_f.expand(bs, -1, -1)
        conditions.sync_f = conditions.sync_f.expand(bs, -1, -1)
        conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1)
        if negative_text_features is None:
            conditions.text_f = conditions.text_f.expand(bs, -1, -1)
            conditions.text_f_c = conditions.text_f_c.expand(bs, -1)

        return conditions

    def ode_wrapper(self, t: torch.Tensor, latent: torch.Tensor, conditions: PreprocessedConditions,
                    empty_conditions: PreprocessedConditions, cfg_strength: float) -> torch.Tensor:
        t = t * torch.ones(len(latent), device=latent.device, dtype=latent.dtype)

        if cfg_strength < 1.0:
            return self.predict_flow(latent, t, conditions)
        else:
            return (cfg_strength * self.predict_flow(latent, t, conditions) +
                    (1 - cfg_strength) * self.predict_flow(latent, t, empty_conditions))

    def load_weights(self, src_dict) -> None:
        if 't_embed.freqs' in src_dict:
            del src_dict['t_embed.freqs']
        if 'latent_rot' in src_dict:
            del src_dict['latent_rot']
        if 'clip_rot' in src_dict:
            del src_dict['clip_rot']

        self.load_state_dict(src_dict, strict=True)

    @property
    def device(self) -> torch.device:
        return self.latent_mean.device

    @property
    def latent_seq_len(self) -> int:
        return self._latent_seq_len

    @property
    def clip_seq_len(self) -> int:
        return self._clip_seq_len

    @property
    def sync_seq_len(self) -> int:
        return self._sync_seq_len


def small_16k(**kwargs) -> MMAudio:
    num_heads = 7
    return MMAudio(latent_dim=20,
                   clip_dim=1024,
                   sync_dim=768,
                   text_dim=1024,
                   hidden_dim=64 * num_heads,
                   depth=12,
                   fused_depth=8,
                   num_heads=num_heads,
                   latent_seq_len=250,
                   clip_seq_len=64,
                   sync_seq_len=192,
                   **kwargs)


def small_44k(**kwargs) -> MMAudio:
    num_heads = 7
    return MMAudio(latent_dim=40,
                   clip_dim=1024,
                   sync_dim=768,
                   text_dim=1024,
                   hidden_dim=64 * num_heads,
                   depth=12,
                   fused_depth=8,
                   num_heads=num_heads,
                   latent_seq_len=345,
                   clip_seq_len=64,
                   sync_seq_len=192,
                   **kwargs)


def medium_44k(**kwargs) -> MMAudio:
    num_heads = 14
    return MMAudio(latent_dim=40,
                   clip_dim=1024,
                   sync_dim=768,
                   text_dim=1024,
                   hidden_dim=64 * num_heads,
                   depth=12,
                   fused_depth=8,
                   num_heads=num_heads,
                   latent_seq_len=345,
                   clip_seq_len=64,
                   sync_seq_len=192,
                   **kwargs)


def large_44k(**kwargs) -> MMAudio:
    num_heads = 14
    return MMAudio(latent_dim=40,
                   clip_dim=1024,
                   sync_dim=768,
                   text_dim=1024,
                   hidden_dim=64 * num_heads,
                   depth=21,
                   fused_depth=14,
                   num_heads=num_heads,
                   latent_seq_len=345,
                   clip_seq_len=64,
                   sync_seq_len=192,
                   **kwargs)


def large_44k_v2(**kwargs) -> MMAudio:
    num_heads = 14
    return MMAudio(latent_dim=40,
                   clip_dim=1024,
                   sync_dim=768,
                   text_dim=1024,
                   hidden_dim=64 * num_heads,
                   depth=21,
                   fused_depth=14,
                   num_heads=num_heads,
                   latent_seq_len=345,
                   clip_seq_len=64,
                   sync_seq_len=192,
                   v2=True,
                   **kwargs)


def get_my_mmaudio(name: str, **kwargs) -> MMAudio:
    if name == 'small_16k':
        return small_16k(**kwargs)
    if name == 'small_44k':
        return small_44k(**kwargs)
    if name == 'medium_44k':
        return medium_44k(**kwargs)
    if name == 'large_44k':
        return large_44k(**kwargs)
    if name == 'large_44k_v2':
        return large_44k_v2(**kwargs)

    raise ValueError(f'Unknown model name: {name}')


if __name__ == '__main__':
    network = get_my_mmaudio('small_16k')

    # print the number of parameters in terms of millions
    num_params = sum(p.numel() for p in network.parameters()) / 1e6
    print(f'Number of parameters: {num_params:.2f}M')