File size: 5,604 Bytes
e71a2ba
776e43c
 
e71a2ba
 
776e43c
0669a02
aae4195
 
776e43c
aae4195
776e43c
 
b649ec8
aae4195
 
 
 
 
 
 
 
 
 
 
b649ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae4195
 
 
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
 
b649ec8
776e43c
 
 
b649ec8
 
aae4195
b649ec8
aae4195
 
b649ec8
aae4195
0669a02
aae4195
 
 
 
 
 
 
 
 
 
 
 
 
776e43c
aae4195
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys

import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

sys.path.insert(0, './petals/')

from petals.client.remote_model import DistributedBloomForCausalLM

MODEL_NAME = "bigscience/bloom-petals"
tokenizer_bloomd = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
model_bloomd = DistributedBloomForCausalLM.from_pretrained(MODEL_NAME, low_cpu_mem_usage=True)

tokenizer_DialoGPT_small = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model_DialoGPT_small = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")

tokenizer_DialoGPT_medium = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model_DialoGPT_medium = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

tokenizer_DialoGPT_large = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model_DialoGPT_large = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")


def predict_common_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
    new_user_input_ids = tokenizer.encode(input_text + '\n', return_tensors='pt')
    print('Started predict_common_bloom')
    print(f'history: {history}')
    if history != []:
        bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    else:
        bot_input_ids = new_user_input_ids
    print(f'bot_input_ids: {bot_input_ids}')

    history = model.generate(
        bot_input_ids,
        max_new_tokens=number_of_new_tokens,
        pad_token_id=tokenizer.eos_token_id
    ).tolist()
    print(f'history: {history}')

    decode_all = tokenizer.decode(history[0][:len(bot_input_ids[0])])
    all_responses = tokenizer.decode(history[0][len(bot_input_ids[0]):]).split('\n')
    if all_responses[0]:
        decode_all += all_responses[0] + '\n'
    else:
        decode_all += all_responses[1] + '\n'
    print(f'decode_all: {decode_all}')

    history_new = tokenizer.encode(decode_all, return_tensors='pt')
    print(f'history_new: {history_new}')

    decode_all_split = decode_all.split('\n')
    print(f'decode_all_split: {decode_all_split}')

    response_new = [(decode_all_split[i], decode_all_split[i + 1]) for i in range(0, len(decode_all_split) - 1, 2)]
    print(f'response_new: {response_new}')

    return response_new, history_new


def predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
    person_description_ids = tokenizer.encode(person_description + tokenizer.eos_token, return_tensors='pt')
    new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')

    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    input_with_desc_ids = torch.cat([person_description_ids, bot_input_ids], dim=-1)
    history = model.generate(
        input_with_desc_ids,
        max_new_tokens=number_of_new_tokens,
        pad_token_id=tokenizer.eos_token_id
    ).tolist()
    history[0] = history[0][len(person_description_ids[0]):]
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]

    return response, history


def predict(
        input_text,
        history=None,
        person_description=None,
        number_of_new_tokens=10,
        model_name=None,
        del_hist=None
):

    if history is None or del_hist == 'delete history':
        history = []

    if model_name == 'DialoGPT-small':
        model = model_DialoGPT_small
        tokenizer = tokenizer_DialoGPT_small
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'DialoGPT-medium':
        model = model_DialoGPT_medium
        tokenizer = tokenizer_DialoGPT_medium
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'DialoGPT-large':
        model = model_DialoGPT_large
        tokenizer = tokenizer_DialoGPT_large
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'bloom-petals':
        model = model_bloomd
        tokenizer = tokenizer_bloomd
        print(f'Lets go history: {history}')
        return predict_common_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    else:
        model_name = 'DialoGPT-medium'
        model = model_DialoGPT_medium
        tokenizer = tokenizer_DialoGPT_medium
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)


gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(label='Input message', lines=1, placeholder="Enter your message..."),
        "state",
        gr.Textbox(label='Person Description', lines=2, placeholder="Enter a description of the person..."),
        gr.Slider(label='Number of new tokens', minimum=2, maximum=100, value=10),
        gr.Radio(
            label='Model name',
            choices=[
                'DialoGPT-small',
                'DialoGPT-medium',
                'DialoGPT-large',
                'bloom-petals',
            ]
        ),
        gr.Radio(
            label='Delete history',
            value="Don't delete history",
            choices=[
                'delete history',
                "Don't delete history"
            ]),
    ],
    outputs=[gr.Chatbot(label='History of the dialogue'), "state"],
).launch(),