File size: 27,205 Bytes
f7e1683
0ce84cc
 
 
f4b5c65
0ce84cc
 
ecaad35
 
3a1afda
ecaad35
3a1afda
c2e3966
a63a008
 
 
 
1c3d9c2
0ce84cc
3b10a63
 
 
 
 
 
 
 
 
 
 
0ce84cc
 
b2e635f
f5e4024
 
 
 
 
 
 
c2e3966
 
 
 
 
 
 
 
266d5cd
c2e3966
 
 
 
 
4902504
 
 
 
 
 
 
 
 
 
 
 
c2e3966
 
4902504
 
 
 
9e1c7c4
4902504
 
 
9e1c7c4
4902504
 
 
9e1c7c4
4902504
9e1c7c4
4902504
 
 
 
9e1c7c4
4902504
 
9e1c7c4
4902504
 
 
 
9e1c7c4
4902504
 
 
 
9e1c7c4
4902504
 
 
 
 
 
 
 
9e1c7c4
4902504
9e1c7c4
c2e3966
4902504
c2e3966
 
4902504
f5e4024
4902504
 
 
 
c2e3966
 
9e1c7c4
 
4902504
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e635f
4902504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e3966
4902504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1c7c4
4902504
 
c2e3966
4902504
0ce84cc
ecaad35
 
 
 
4c25f4a
a63a008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaad35
 
a63a008
 
 
ecaad35
3a1afda
ecaad35
 
 
3851ab4
ecaad35
 
 
 
81ee5ca
ecaad35
 
0ce84cc
ecaad35
 
a63a008
 
ecaad35
 
 
 
 
3b10a63
c2e3966
3a1afda
 
ecaad35
 
 
a63a008
3a1afda
ecaad35
 
 
 
 
 
 
 
 
 
 
3851ab4
ecaad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63a008
ecaad35
a63a008
c2e3966
 
ecaad35
 
a63a008
 
 
ecaad35
 
a63a008
 
ecaad35
a63a008
 
ecaad35
a63a008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaad35
a63a008
 
 
ecaad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e3966
3a1afda
c2e3966
3b10a63
ecaad35
266d5cd
ecaad35
 
c2e3966
266d5cd
c2e3966
ecaad35
 
 
c2e3966
 
266d5cd
ecaad35
c2e3966
266d5cd
ecaad35
b2e635f
266d5cd
ecaad35
b2e635f
ecaad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266d5cd
ecaad35
 
b2e635f
 
f4b5c65
a63a008
 
 
 
ecaad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff3127
ecaad35
 
2ff3127
ecaad35
 
2ff3127
 
 
 
 
 
 
 
ecaad35
 
2ff3127
 
ecaad35
 
 
 
 
2ff3127
ecaad35
 
7697af6
ecaad35
0ce84cc
f5e4024
0ce84cc
a0f7708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaad35
4b97382
0ce84cc
ecaad35
 
 
 
1c3d9c2
e30549b
9a5e6ca
 
 
 
 
 
1c3d9c2
 
 
 
 
 
 
e30549b
 
 
9a5e6ca
e30549b
9a5e6ca
e30549b
9a5e6ca
e30549b
 
9a5e6ca
 
 
1c3d9c2
 
 
 
 
 
 
 
 
ecaad35
1c3d9c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaad35
1c3d9c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaad35
1c3d9c2
 
 
 
 
 
 
 
 
 
 
ecaad35
 
 
1c3d9c2
 
ecaad35
 
1c3d9c2
ecaad35
 
 
077e0e7
ecaad35
a63a008
 
 
 
 
 
ecaad35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
import time
import tempfile
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple, Optional, Dict, Any
import math
from dataclasses import dataclass
import multiprocessing
import psutil
import concurrent.futures
import gc
from gradio.themes import Monochrome

class TimingManager:
    def __init__(self):
        self.current_time = 0
        self.segment_gap = 100  # ms gap between segments
    
    def get_timing(self, duration):
        start_time = self.current_time
        end_time = start_time + duration
        self.current_time = end_time + self.segment_gap
        return start_time, end_time

def get_audio_length(audio_file):
    audio = AudioSegment.from_file(audio_file)
    return len(audio) / 1000

def format_time_ms(milliseconds):
    seconds, ms = divmod(int(milliseconds), 1000)
    mins, secs = divmod(seconds, 60)
    hrs, mins = divmod(mins, 60)
    return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"

@dataclass
class Segment:
    id: int
    text: str
    start_time: int = 0
    end_time: int = 0
    duration: int = 0
    audio: Optional[AudioSegment] = None
    lines: List[str] = None  # Add lines field for display purposes only

class TextProcessor:
    def __init__(self, words_per_line: int, lines_per_segment: int):
        self.words_per_line = words_per_line
        self.lines_per_segment = lines_per_segment
        self.min_segment_words = 3
        self.max_segment_words = words_per_line * lines_per_segment * 1.5  # Allow 50% more for natural breaks
        self.punctuation_weights = {
            '.': 1.0,  # Strong break
            '!': 1.0,
            '?': 1.0,
            ';': 0.8,  # Medium-strong break
            ':': 0.7,
            ',': 0.5,  # Medium break
            '-': 0.3,  # Weak break
            '(': 0.2,
            ')': 0.2
        }
    
    def analyze_sentence_complexity(self, text: str) -> float:
        """Analyze sentence complexity to determine optimal segment length"""
        words = text.split()
        complexity = 1.0
        
        # Adjust for sentence length
        if len(words) > self.words_per_line * 2:
            complexity *= 1.2
        
        # Adjust for punctuation density
        punct_count = sum(text.count(p) for p in self.punctuation_weights.keys())
        complexity *= (1 + (punct_count / len(words)) * 0.5)
        
        return complexity

    def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]:
        """Find natural break points with their weights"""
        breaks = []
        words = text.split()
        
        for i, word in enumerate(words):
            weight = 0
            
            # Check for punctuation
            for punct, punct_weight in self.punctuation_weights.items():
                if word.endswith(punct):
                    weight = max(weight, punct_weight)
            
            # Check for natural phrase boundaries
            phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'}
            if i < len(words) - 1 and words[i+1].lower() in phrase_starters:
                weight = max(weight, 0.6)
            
            # Check for conjunctions at natural points
            if i > self.min_segment_words:
                conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'}
                if word.lower() in conjunctions:
                    weight = max(weight, 0.4)
            
            if weight > 0:
                breaks.append((i, weight))
        
        return breaks

    def split_into_segments(self, text: str) -> List[Segment]:
        # Normalize text and add proper spacing around punctuation
        text = re.sub(r'\s+', ' ', text.strip())
        text = re.sub(r'([.!?,;:])\s*', r'\1 ', text)
        text = re.sub(r'\s+([.!?,;:])', r'\1', text)
        
        # First, split into major segments by strong punctuation
        segments = []
        current_segment = []
        current_text = ""
        words = text.split()
        
        i = 0
        while i < len(words):
            complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2]))
            breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)]))
            
            # Find best break point
            best_break = None
            best_weight = 0
            
            for break_idx, weight in breaks:
                actual_idx = i + break_idx
                if (actual_idx - i >= self.min_segment_words and 
                    actual_idx - i <= self.max_segment_words):
                    if weight > best_weight:
                        best_break = break_idx
                        best_weight = weight
            
            if best_break is None:
                # If no good break found, use maximum length
                best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i)
            
            # Create segment
            segment_words = words[i:i + best_break + 1]
            segment_text = ' '.join(segment_words)
            
            # Split segment into lines
            lines = self.split_into_lines(segment_text)
            final_segment_text = '\n'.join(lines)
            
            segments.append(Segment(
                id=len(segments) + 1,
                text=final_segment_text
            ))
            
            i += best_break + 1
        
        return segments

    def split_into_lines(self, text: str) -> List[str]:
        """Split segment text into natural lines"""
        words = text.split()
        lines = []
        current_line = []
        word_count = 0
        
        for word in words:
            current_line.append(word)
            word_count += 1
            
            # Check for natural line breaks
            is_break = (
                word_count >= self.words_per_line or
                any(word.endswith(p) for p in '.!?') or
                (word_count >= self.words_per_line * 0.7 and
                 any(word.endswith(p) for p in ',;:'))
            )
            
            if is_break:
                lines.append(' '.join(current_line))
                current_line = []
                word_count = 0
        
        if current_line:
            lines.append(' '.join(current_line))
        
        return lines

# IMPROVEMENT 1: Enhanced Error Handling
class TTSError(Exception):
    """Custom exception for TTS processing errors"""
    pass

class ResourceOptimizer:
    @staticmethod
    def get_optimal_workers():
        cpu_count = multiprocessing.cpu_count()
        return max(cpu_count - 1, 1)  # Leave one core for system
    
    @staticmethod
    def get_memory_limit():
        # Use up to 70% of available RAM
        return int(psutil.virtual_memory().available * 0.7)
    
    @staticmethod
    def get_batch_size(total_segments):
        # Calculate optimal batch size based on CPU cores
        return min(total_segments, ResourceOptimizer.get_optimal_workers() * 2)

async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment:
    """Process a complete segment as a single TTS unit with improved error handling"""
    # Pre-allocate memory for audio processing
    gc.collect()  # Force garbage collection before processing
    
    audio_file = os.path.join(tempfile.gettempdir(), f"temp_segment_{segment.id}_{uuid.uuid4()}.wav")
    try:
        # Process the entire segment text as one unit, replacing newlines with spaces
        segment_text = ' '.join(segment.text.split('\n'))
        tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch)
        
        try:
            await tts.save(audio_file)
        except Exception as e:
            raise TTSError(f"Failed to generate audio for segment {segment.id}: {str(e)}")
        
        if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0:
            raise TTSError(f"Generated audio file is empty or missing for segment {segment.id}")
        
        try:
            segment.audio = AudioSegment.from_file(audio_file)
            # Optimize memory usage for audio processing
            segment.audio = segment.audio.set_channels(1)  # Convert to mono for memory efficiency
            silence = AudioSegment.silent(duration=30)
            segment.audio = silence + segment.audio + silence
            segment.duration = len(segment.audio)
        except Exception as e:
            raise TTSError(f"Failed to process audio file for segment {segment.id}: {str(e)}")
        
        return segment
    finally:
        if os.path.exists(audio_file):
            try:
                os.remove(audio_file)
            except Exception:
                pass

# IMPROVEMENT 2: Better File Management with cleanup
class FileManager:
    """Manages temporary and output files with cleanup capabilities"""
    def __init__(self):
        self.temp_dir = tempfile.mkdtemp(prefix="tts_app_")
        self.output_files = []
        self.max_files_to_keep = 5  # Keep only the 5 most recent output pairs
        
    def get_temp_path(self, prefix):
        """Get a path for a temporary file"""
        return os.path.join(self.temp_dir, f"{prefix}_{uuid.uuid4()}")
    
    def create_output_paths(self):
        """Create paths for output files"""
        unique_id = str(uuid.uuid4())
        audio_path = os.path.join(self.temp_dir, f"final_audio_{unique_id}.mp3")
        srt_path = os.path.join(self.temp_dir, f"final_subtitles_{unique_id}.srt")
        
        self.output_files.append((srt_path, audio_path))
        self.cleanup_old_files()
        
        return srt_path, audio_path
    
    def cleanup_old_files(self):
        """Clean up old output files, keeping only the most recent ones"""
        if len(self.output_files) > self.max_files_to_keep:
            old_files = self.output_files[:-self.max_files_to_keep]
            for srt_path, audio_path in old_files:
                try:
                    if os.path.exists(srt_path):
                        os.remove(srt_path)
                    if os.path.exists(audio_path):
                        os.remove(audio_path)
                except Exception:
                    pass  # Ignore deletion errors
            
            # Update the list to only include files we're keeping
            self.output_files = self.output_files[-self.max_files_to_keep:]
    
    def cleanup_all(self):
        """Clean up all managed files"""
        for srt_path, audio_path in self.output_files:
            try:
                if os.path.exists(srt_path):
                    os.remove(srt_path)
                if os.path.exists(audio_path):
                    os.remove(audio_path)
            except Exception:
                pass  # Ignore deletion errors
        
        try:
            os.rmdir(self.temp_dir)
        except Exception:
            pass  # Ignore if directory isn't empty or can't be removed

# Create global file manager
file_manager = FileManager()

# IMPROVEMENT 3: Parallel Processing for Segments
async def generate_accurate_srt(
    text: str, 
    voice: str, 
    rate: str, 
    pitch: str, 
    words_per_line: int, 
    lines_per_segment: int,
    progress_callback=None,
    parallel: bool = True,
    max_workers: Optional[int] = None
) -> Tuple[str, str]:
    """Generate accurate SRT with optimized resource utilization"""
    processor = TextProcessor(words_per_line, lines_per_segment)
    segments = processor.split_into_segments(text)
    total_segments = len(segments)
    
    # Optimize worker count based on system resources
    if max_workers is None:
        max_workers = ResourceOptimizer.get_optimal_workers()
    
    if parallel and total_segments > 1:
        # Enhanced parallel processing with resource optimization
        batch_size = ResourceOptimizer.get_batch_size(total_segments)
        semaphore = asyncio.Semaphore(max_workers)
        processed_segments = []
        processed_count = 0
        
        # Process in batches for better resource utilization
        for i in range(0, total_segments, batch_size):
            batch = segments[i:i + batch_size]
            batch_tasks = []
            
            for segment in batch:
                batch_tasks.append(
                    process_with_semaphore(segment, voice, rate, pitch, semaphore)
                )
            
            # Process batch with maximum resource utilization
            batch_results = await asyncio.gather(*batch_tasks)
            processed_segments.extend(batch_results)
            
            # Force garbage collection between batches
            gc.collect()
            
            if progress_callback:
                processed_count += len(batch)
                progress = 0.1 + (0.8 * processed_count / total_segments)
                progress_callback(progress, f"Processed {processed_count}/{total_segments} segments")
    else:
        # Process segments sequentially (original method)
        for i, segment in enumerate(segments):
            try:
                processed_segment = await process_segment_with_timing(segment, voice, rate, pitch)
                processed_segments.append(processed_segment)
                
                if progress_callback:
                    progress = 0.1 + (0.8 * (i + 1) / total_segments)
                    progress_callback(progress, f"Processed {i + 1}/{total_segments} segments")
            except Exception as e:
                if progress_callback:
                    progress_callback(0.9, f"Error processing segment {segment.id}: {str(e)}")
                raise TTSError(f"Failed to process segment {segment.id}: {str(e)}")
    
    # Sort segments by ID to ensure correct order
    processed_segments.sort(key=lambda s: s.id)
    
    if progress_callback:
        progress_callback(0.9, "Finalizing audio and subtitles")
    
    # Now combine the segments in the correct order
    current_time = 0
    final_audio = AudioSegment.empty()
    srt_content = ""
    
    for segment in processed_segments:
        # Calculate precise timing
        segment.start_time = current_time
        segment.end_time = current_time + segment.duration
        
        # Add to SRT with precise timing
        srt_content += (
            f"{segment.id}\n"
            f"{format_time_ms(segment.start_time)} --> {format_time_ms(segment.end_time)}\n"
            f"{segment.text}\n\n"
        )
        
        # Add to final audio with precise positioning
        final_audio = final_audio.append(segment.audio, crossfade=0)
        
        # Update timing with precise gap
        current_time = segment.end_time
    
    # Export with high precision
    srt_path, audio_path = file_manager.create_output_paths()
    
    try:
        # Export with optimized quality settings and compression
        export_params = {
            'format': 'mp3',
            'bitrate': '192k',  # Reduced from 320k but still high quality
            'parameters': [
                '-ar', '44100',  # Standard sample rate
                '-ac', '2',      # Stereo
                '-compression_level', '0',  # Best compression
                '-qscale:a', '2'  # High quality VBR encoding
            ]
        }
        final_audio.export(audio_path, **export_params)
        
        with open(srt_path, "w", encoding='utf-8') as f:
            f.write(srt_content)
    except Exception as e:
        if progress_callback:
            progress_callback(1.0, f"Error exporting final files: {str(e)}")
        raise TTSError(f"Failed to export final files: {str(e)}")
    
    if progress_callback:
        progress_callback(1.0, "Complete!")
    
    return srt_path, audio_path

async def process_with_semaphore(segment, voice, rate, pitch, semaphore):
    async with semaphore:
        return await process_segment_with_timing(segment, voice, rate, pitch)

# IMPROVEMENT 4: Progress Reporting with proper error handling for older Gradio versions
async def process_text_with_progress(
    text, 
    pitch, 
    rate, 
    voice, 
    words_per_line, 
    lines_per_segment, 
    parallel_processing,
    progress=gr.Progress()
):
    # Input validation
    if not text or text.strip() == "":
        return None, None, None, True, "Please enter some text to convert to speech."
    
    # Format pitch and rate strings
    pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz"
    rate_str = f"{rate:+d}%" if rate != 0 else "+0%"
    
    try:
        # Start progress tracking
        progress(0, "Preparing text...")
        
        def update_progress(value, status):
            progress(value, status)
        
        srt_path, audio_path = await generate_accurate_srt(
            text,
            voice_options[voice],
            rate_str,
            pitch_str,
            words_per_line,
            lines_per_segment,
            progress_callback=update_progress,
            parallel=parallel_processing
        )
        
        # If successful, return results and hide error
        return srt_path, audio_path, audio_path, False, ""
    except TTSError as e:
        # Return specific TTS error
        return None, None, None, True, f"TTS Error: {str(e)}"
    except Exception as e:
        # Return any other error
        return None, None, None, True, f"Unexpected error: {str(e)}"

# Voice options dictionary
voice_options = {
    "Andrew Male": "en-US-AndrewNeural",
    "Jenny Female": "en-US-JennyNeural",
    "Guy Male": "en-US-GuyNeural",
    "Ana Female": "en-US-AnaNeural",
    "Aria Female": "en-US-AriaNeural",
    "Brian Male": "en-US-BrianNeural",
    "Christopher Male": "en-US-ChristopherNeural",
    "Eric Male": "en-US-EricNeural",
    "Michelle Male": "en-US-MichelleNeural",
    "Roger Male": "en-US-RogerNeural",
    "Natasha Female": "en-AU-NatashaNeural",
    "William Male": "en-AU-WilliamNeural",
    "Clara Female": "en-CA-ClaraNeural",
    "Liam Female ": "en-CA-LiamNeural",
    "Libby Female": "en-GB-LibbyNeural",
    "Maisie": "en-GB-MaisieNeural",
    "Ryan": "en-GB-RyanNeural",
    "Sonia": "en-GB-SoniaNeural",
    "Thomas": "en-GB-ThomasNeural",
    "Sam": "en-HK-SamNeural",
    "Yan": "en-HK-YanNeural",
    "Connor": "en-IE-ConnorNeural",
    "Emily": "en-IE-EmilyNeural",
    "Neerja": "en-IN-NeerjaNeural",
    "Prabhat": "en-IN-PrabhatNeural",
    "Asilia": "en-KE-AsiliaNeural",
    "Chilemba": "en-KE-ChilembaNeural",
    "Abeo": "en-NG-AbeoNeural",
    "Ezinne": "en-NG-EzinneNeural",
    "Mitchell": "en-NZ-MitchellNeural",
    "James": "en-PH-JamesNeural",
    "Rosa": "en-PH-RosaNeural",
    "Luna": "en-SG-LunaNeural",
    "Wayne": "en-SG-WayneNeural",
    "Elimu": "en-TZ-ElimuNeural",
    "Imani": "en-TZ-ImaniNeural",
    "Leah": "en-ZA-LeahNeural",
    "Luke": "en-ZA-LukeNeural"
    # Add other voices as needed
}

# Register cleanup on exit
import atexit
atexit.register(file_manager.cleanup_all)

# Create custom theme
theme = gr.themes.Monochrome(
    primary_hue="blue",
    secondary_hue="slate",
    neutral_hue="zinc",
    radius_size=gr.themes.sizes.radius_sm,
    font=("Inter", "system-ui", "sans-serif"),
    font_mono=("IBM Plex Mono", "monospace")
)

# Create Gradio interface with modern UI
with gr.Blocks(
    title="Text to Speech Studio", 
    theme=theme,
    css="""
        .container { max-width: 1200px; margin: auto; padding: 2rem; }
        .title { text-align: center; margin-bottom: 2.5rem; }
        .title h1 { font-size: 2.5rem; font-weight: 700; margin-bottom: 0.5rem; }
        .title h3 { font-size: 1.2rem; font-weight: 400; opacity: 0.8; }
        .input-group { margin-bottom: 1.5rem; border-radius: 8px; }
        .help-text { font-size: 0.9rem; opacity: 0.8; padding: 0.5rem 0; }
        .status-area { margin: 1.5rem 0; padding: 1rem; border-radius: 8px; }
        .error-message { color: #dc2626; }
        .preview-audio { margin: 1rem 0; }
        .download-file { padding: 1rem; }
        button.primary { transform: scale(1); transition: transform 0.2s; }
        button.primary:hover { transform: scale(1.02); }
        button.secondary:hover { opacity: 0.9; }
    """
) as app:
    with gr.Group(elem_classes="container"):
        gr.Markdown(
            """
            # πŸŽ™οΈ Text to Speech Studio
            ### Generate professional quality audio with synchronized subtitles
            """
        , elem_classes="title")
        
        with gr.Tabs():
            with gr.TabItem("πŸ“ Text Input"):
                with gr.Row():
                    with gr.Column(scale=3):
                        text_input = gr.Textbox(
                            label="Your Text",
                            lines=10,
                            placeholder="Enter your text here. The AI will automatically segment it into natural phrases...",
                            elem_classes="input-group"
                        )
                        gr.Markdown(
                            "πŸ’‘ **Tip:** For best results, ensure proper punctuation in your text.",
                            elem_classes="help-text"
                        )
                    
                    with gr.Column(scale=2):
                        with gr.Group():
                            gr.Markdown("### Voice Settings")
                            voice_dropdown = gr.Dropdown(
                                label="Voice",
                                choices=list(voice_options.keys()),
                                value="Jenny Female",
                                elem_classes="input-group"
                            )
                            with gr.Row():
                                with gr.Column():
                                    pitch_slider = gr.Slider(
                                        label="Pitch",
                                        minimum=-10,
                                        maximum=10,
                                        value=0,
                                        step=1,
                                        elem_classes="input-group"
                                    )
                                with gr.Column():
                                    rate_slider = gr.Slider(
                                        label="Speed",
                                        minimum=-25,
                                        maximum=25,
                                        value=0,
                                        step=1,
                                        elem_classes="input-group"
                                    )
            
            with gr.TabItem("βš™οΈ Advanced Settings"):
                with gr.Row():
                    with gr.Column():
                        words_per_line = gr.Slider(
                            label="Words per Line",
                            minimum=3,
                            maximum=12,
                            value=6,
                            step=1,
                            info="πŸ“ Controls subtitle line length",
                            elem_classes="input-group"
                        )
                    with gr.Column():
                        lines_per_segment = gr.Slider(
                            label="Lines per Segment",
                            minimum=1,
                            maximum=4,
                            value=2,
                            step=1,
                            info="πŸ“‘ Controls subtitle block size",
                            elem_classes="input-group"
                        )
                    with gr.Column():
                        parallel_processing = gr.Checkbox(
                            label="Parallel Processing",
                            value=True,
                            info="⚑ Faster processing for longer texts",
                            elem_classes="input-group"
                        )
        
        with gr.Row():
            with gr.Column(scale=2):
                submit_btn = gr.Button(
                    "🎯 Generate Audio & Subtitles",
                    variant="primary",
                    scale=2
                )
            with gr.Column():
                clear_btn = gr.Button("πŸ”„ Clear All", variant="secondary")
        
        with gr.Group(elem_classes="status-area"):
            error_output = gr.Textbox(
                label="Status",
                visible=False,
                elem_classes="error-message"
            )
            
        with gr.Tabs():
            with gr.TabItem("🎧 Preview"):
                audio_output = gr.Audio(
                    label="Generated Audio",
                    elem_classes="preview-audio"
                )
            with gr.TabItem("πŸ“₯ Downloads"):
                with gr.Row():
                    with gr.Column():
                        srt_file = gr.File(
                            label="πŸ“„ Subtitle File (SRT)",
                            elem_classes="download-file"
                        )
                    with gr.Column():
                        audio_file = gr.File(
                            label="🎡 Audio File (MP3)",
                            elem_classes="download-file"
                        )

        gr.Markdown(
            """
            ### πŸ“Œ Features
            - Professional-quality text-to-speech conversion
            - Automatic natural speech segmentation
            - Perfectly synchronized subtitles
            - Multiple voice options and customization
            """,
            elem_classes="help-text"
        )

    # Clear button functionality
    def clear_inputs():
        return {
            text_input: "",
            pitch_slider: 0,
            rate_slider: 0,
            voice_dropdown: "Jenny Female",
            words_per_line: 6,
            lines_per_segment: 2,
            parallel_processing: True,
            error_output: gr.update(visible=False),
            audio_output: None,
            srt_file: None,
            audio_file: None
        }
    
    clear_btn.click(
        fn=clear_inputs,
        inputs=[],
        outputs=[
            text_input, pitch_slider, rate_slider, voice_dropdown,
            words_per_line, lines_per_segment, parallel_processing,
            error_output, audio_output, srt_file, audio_file
        ]
    )

    # Existing button click handler
    submit_btn.click(
        fn=process_text_with_progress,
        inputs=[
            text_input, pitch_slider, rate_slider, voice_dropdown,
            words_per_line, lines_per_segment, parallel_processing
        ],
        outputs=[
            srt_file, audio_file, audio_output, error_output, error_output
        ],
        api_name="generate"
    )

if __name__ == "__main__":
    # Set process priority to high
    p = psutil.Process()
    try:
        p.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS if os.name == 'nt' else 10)
    except Exception:
        pass
    app.launch()