Spaces:
Runtime error
Runtime error
File size: 32,159 Bytes
1ec3d3a 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 30e5d19 1ec3d3a 8d30b62 9bcca78 30e5d19 1ec3d3a 30e5d19 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 30e5d19 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 30e5d19 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 30e5d19 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 8d30b62 1ec3d3a 8d30b62 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 30e5d19 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 efe0924 1ec3d3a efe0924 1ec3d3a efe0924 8d30b62 1ec3d3a 8d30b62 1ec3d3a efe0924 1ec3d3a efe0924 1ec3d3a efe0924 1ec3d3a efe0924 b43c18e efe0924 1ec3d3a efe0924 30e5d19 efe0924 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 1ec3d3a 8d30b62 efe0924 d5357c2 efe0924 1ec3d3a efe0924 1ec3d3a efe0924 1ec3d3a efe0924 1ec3d3a efe0924 1ec3d3a efe0924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
import os
import ast
import time
from enums import PromptType # also supports imports from this file from other files
non_hf_types = ['gpt4all_llama', 'llama', 'gptj']
prompt_type_to_model_name = {
'plain': [
'EleutherAI/gpt-j-6B',
'EleutherAI/pythia-6.9b',
'EleutherAI/pythia-12b',
'EleutherAI/pythia-12b-deduped',
'EleutherAI/gpt-neox-20b',
'openlm-research/open_llama_7b_700bt_preview',
'decapoda-research/llama-7b-hf',
'decapoda-research/llama-13b-hf',
'decapoda-research/llama-30b-hf',
'decapoda-research/llama-65b-hf',
'facebook/mbart-large-50-many-to-many-mmt',
'philschmid/bart-large-cnn-samsum',
'philschmid/flan-t5-base-samsum',
'gpt2',
'distilgpt2',
'mosaicml/mpt-7b-storywriter',
'mosaicml/mpt-7b-instruct', # internal code handles instruct
'mosaicml/mpt-7b-chat', # NC, internal code handles instruct
'mosaicml/mpt-30b-instruct', # internal code handles instruct
],
'gptj': ['gptj', 'gpt4all_llama'],
'prompt_answer': [
'h2oai/h2ogpt-gm-oasst1-en-1024-20b',
'h2oai/h2ogpt-gm-oasst1-en-1024-12b',
'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b',
'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b',
'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b-v2',
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3',
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b',
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2',
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2',
'h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k',
'h2oai/h2ogpt-gm-oasst1-multilang-xgen-7b-8k',
],
'prompt_answer_openllama': [
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt',
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2',
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-700bt',
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b',
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b',
],
'instruct': [],
'instruct_with_end': ['databricks/dolly-v2-12b'],
'quality': [],
'human_bot': [
'h2oai/h2ogpt-oasst1-512-12b',
'h2oai/h2ogpt-oasst1-512-20b',
'h2oai/h2ogpt-oig-oasst1-256-6_9b',
'h2oai/h2ogpt-oig-oasst1-512-6_9b',
'h2oai/h2ogpt-oig-oasst1-256-6.9b', # legacy
'h2oai/h2ogpt-oig-oasst1-512-6.9b', # legacy
'h2oai/h2ogpt-research-oasst1-512-30b',
'h2oai/h2ogpt-research-oasst1-llama-65b',
'h2oai/h2ogpt-oasst1-falcon-40b',
'h2oai/h2ogpt-oig-oasst1-falcon-40b',
],
'dai_faq': [],
'summarize': [],
'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'],
'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b', 'TheBloke/stable-vicuna-13B-HF', 'junelee/wizard-vicuna-13b'],
'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'],
"open_assistant": ['OpenAssistant/oasst-sft-7-llama-30b-xor', 'oasst-sft-7-llama-30b'],
"wizard_lm": ['ehartford/WizardLM-7B-Uncensored', 'ehartford/WizardLM-13B-Uncensored'],
"wizard_mega": ['openaccess-ai-collective/wizard-mega-13b'],
"instruct_simple": ['JosephusCheung/Guanaco'],
"wizard_vicuna": ['ehartford/Wizard-Vicuna-13B-Uncensored'],
"wizard2": ['llama', 'mosaicml/mpt-30b-instruct'],
"vicuna11": ['lmsys/vicuna-33b-v1.3'],
# could be plain, but default is correct prompt_type for default TheBloke model ggml-wizardLM-7B.q4_2.bin
}
if os.getenv('OPENAI_API_KEY'):
prompt_type_to_model_name.update({
"openai": ["text-davinci-003", "text-curie-001", "text-babbage-001", "text-ada-001"],
"openai_chat": ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"],
})
inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l}
inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l}
prompt_types_strings = []
for p in PromptType:
prompt_types_strings.extend([p.name])
prompt_types = []
for p in PromptType:
prompt_types.extend([p.name, p.value, str(p.value)])
def get_prompt(prompt_type, prompt_dict, chat, context, reduced, making_context, return_dict=False):
prompt_dict_error = ''
generates_leading_space = False
if prompt_type == PromptType.custom.name and not isinstance(prompt_dict, dict):
try:
prompt_dict = ast.literal_eval(prompt_dict)
except BaseException as e:
prompt_dict_error = str(e)
if prompt_dict_error:
promptA = None
promptB = None
PreInstruct = None
PreInput = ''
PreResponse = ''
terminate_response = None
chat_sep = ''
chat_turn_sep = ''
humanstr = ''
botstr = ''
generates_leading_space = False
elif prompt_type in [PromptType.custom.value, str(PromptType.custom.value),
PromptType.custom.name]:
promptA = prompt_dict.get('promptA', '')
promptB = prompt_dict('promptB', '')
PreInstruct = prompt_dict.get('PreInstruct', '')
PreInput = prompt_dict.get('PreInput', '')
PreResponse = prompt_dict.get('PreResponse', '')
terminate_response = prompt_dict.get('terminate_response', None)
chat_sep = prompt_dict.get('chat_sep', '\n')
chat_turn_sep = prompt_dict.get('chat_turn_sep', '\n')
humanstr = prompt_dict.get('humanstr', '')
botstr = prompt_dict.get('botstr', '')
elif prompt_type in [PromptType.plain.value, str(PromptType.plain.value),
PromptType.plain.name]:
promptA = promptB = PreInstruct = PreInput = PreResponse = None
terminate_response = []
chat_turn_sep = chat_sep = ''
# plain should have None for human/bot, so nothing truncated out, not '' that would truncate after first token
humanstr = None
botstr = None
elif prompt_type == 'simple_instruct':
promptA = promptB = PreInstruct = PreInput = PreResponse = None
terminate_response = []
chat_turn_sep = chat_sep = '\n'
humanstr = None
botstr = None
elif prompt_type in [PromptType.instruct.value, str(PromptType.instruct.value),
PromptType.instruct.name] + [PromptType.instruct_with_end.value,
str(PromptType.instruct_with_end.value),
PromptType.instruct_with_end.name]:
promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not (
chat and reduced) else ''
promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not (
chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
if prompt_type in [PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value),
PromptType.instruct_with_end.name]:
terminate_response = ['### End']
else:
terminate_response = None
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.quality.value, str(PromptType.quality.value),
PromptType.quality.name]:
promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not (
chat and reduced) else ''
promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not (
chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
terminate_response = None
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct # first thing human says
botstr = PreResponse # first thing bot says
elif prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
PromptType.human_bot.name] + [PromptType.human_bot_orig.value,
str(PromptType.human_bot_orig.value),
PromptType.human_bot_orig.name]:
human = '<human>:'
bot = "<bot>:"
if reduced or context or prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
PromptType.human_bot.name]:
preprompt = ''
else:
cur_date = time.strftime('%Y-%m-%d')
cur_time = time.strftime('%H:%M:%S %p %Z')
PRE_PROMPT = """\
Current Date: {}
Current Time: {}
"""
preprompt = PRE_PROMPT.format(cur_date, cur_time)
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = human + ' '
PreInput = None
if making_context:
# when making context, want it to appear as-if LLM generated, which starts with space after :
PreResponse = bot + ' '
else:
# normally LLM adds space after this, because was how trained.
# if add space here, non-unique tokenization will often make LLM produce wrong output
PreResponse = bot
terminate_response = ['\n' + human, '\n' + bot, human, bot, PreResponse]
chat_turn_sep = chat_sep = '\n'
humanstr = human # tag before human talks
botstr = bot # tag before bot talks
generates_leading_space = True
elif prompt_type in [PromptType.dai_faq.value, str(PromptType.dai_faq.value),
PromptType.dai_faq.name]:
promptA = ''
promptB = 'Answer the following Driverless AI question.\n'
PreInstruct = """
### Driverless AI frequently asked question:
"""
PreInput = None
PreResponse = """
### Driverless AI documentation answer:
"""
terminate_response = ['\n\n']
chat_turn_sep = chat_sep = terminate_response
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.summarize.value, str(PromptType.summarize.value),
PromptType.summarize.name]:
promptA = promptB = PreInput = ''
PreInstruct = '## Main Text\n\n'
PreResponse = '\n\n## Summary\n\n'
terminate_response = None
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value),
PromptType.instruct_vicuna.name]:
promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the human's questions." if not (
chat and reduced) else ''
PreInstruct = """
### Human:
"""
PreInput = None
PreResponse = """
### Assistant:
"""
terminate_response = [
'### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.prompt_answer.value, str(PromptType.prompt_answer.value),
PromptType.prompt_answer.name]:
preprompt = ''
prompt_tokens = "<|prompt|>"
answer_tokens = "<|answer|>"
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = prompt_tokens
PreInput = None
PreResponse = answer_tokens
eos = '<|endoftext|>' # neox eos
humanstr = prompt_tokens
botstr = answer_tokens
terminate_response = [humanstr, PreResponse, eos]
chat_sep = ''
chat_turn_sep = eos
elif prompt_type in [PromptType.prompt_answer_openllama.value, str(PromptType.prompt_answer_openllama.value),
PromptType.prompt_answer_openllama.name]:
preprompt = ''
prompt_tokens = "<|prompt|>"
answer_tokens = "<|answer|>"
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = prompt_tokens
PreInput = None
PreResponse = answer_tokens
eos = '</s>' # llama eos
humanstr = prompt_tokens
botstr = answer_tokens
terminate_response = [humanstr, PreResponse, eos]
chat_sep = ''
chat_turn_sep = eos
elif prompt_type in [PromptType.open_assistant.value, str(PromptType.open_assistant.value),
PromptType.open_assistant.name]:
# From added_tokens.json
preprompt = ''
prompt_tokens = "<|prompter|>"
answer_tokens = "<|assistant|>"
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = prompt_tokens
PreInput = None
PreResponse = answer_tokens
pend = "<|prefix_end|>"
eos = "</s>"
humanstr = prompt_tokens
botstr = answer_tokens
terminate_response = [humanstr, PreResponse, pend, eos]
chat_turn_sep = chat_sep = eos
elif prompt_type in [PromptType.wizard_lm.value, str(PromptType.wizard_lm.value),
PromptType.wizard_lm.name]:
# https://github.com/ehartford/WizardLM/blob/main/src/train_freeform.py
preprompt = ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = ""
PreInput = None
PreResponse = "\n\n### Response\n"
eos = "</s>"
terminate_response = [PreResponse, eos]
chat_turn_sep = chat_sep = eos
humanstr = promptA
botstr = PreResponse
elif prompt_type in [PromptType.wizard_mega.value, str(PromptType.wizard_mega.value),
PromptType.wizard_mega.name]:
preprompt = ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = """
### Instruction:
"""
PreInput = None
PreResponse = """
### Assistant:
"""
terminate_response = [PreResponse]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value),
PromptType.instruct_vicuna2.name]:
promptA = promptB = "" if not (chat and reduced) else ''
PreInstruct = """
HUMAN:
"""
PreInput = None
PreResponse = """
ASSISTANT:
"""
terminate_response = [
'HUMAN:'] # but only allow terminate after prompt is found correctly, else can't terminate
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value),
PromptType.instruct_vicuna3.name]:
promptA = promptB = "" if not (chat and reduced) else ''
PreInstruct = """
### User:
"""
PreInput = None
PreResponse = """
### Assistant:
"""
terminate_response = [
'### User:'] # but only allow terminate after prompt is found correctly, else can't terminate
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.wizard2.value, str(PromptType.wizard2.value),
PromptType.wizard2.name]:
# https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML
preprompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.""" if not (
chat and reduced) else ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = """
### Instruction:
"""
PreInput = None
PreResponse = """
### Response:
"""
terminate_response = [PreResponse]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.wizard3.value, str(PromptType.wizard3.value),
PromptType.wizard3.name]:
# https://huggingface.co/TheBloke/wizardLM-13B-1.0-GGML
preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""" if not (
chat and reduced) else ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = """USER: """
PreInput = None
PreResponse = """ASSISTANT: """
terminate_response = [PreResponse]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.wizard_vicuna.value, str(PromptType.wizard_vicuna.value),
PromptType.wizard_vicuna.name]:
preprompt = ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = """USER: """
PreInput = None
PreResponse = """ASSISTANT: """
terminate_response = [PreResponse]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.instruct_simple.value, str(PromptType.instruct_simple.value),
PromptType.instruct_simple.name]:
promptB = promptA = '' if not (chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
terminate_response = None
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.openai.value, str(PromptType.openai.value),
PromptType.openai.name]:
preprompt = """The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly.""" if not (
chat and reduced) else ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = "\nHuman: "
PreInput = None
PreResponse = "\nAI:"
terminate_response = [PreResponse] + [" Human:", " AI:"]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.gptj.value, str(PromptType.gptj.value),
PromptType.gptj.name]:
preprompt = "### Instruction:\n The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response." if not (
chat and reduced) else ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = "\n### Prompt: "
PreInput = None
PreResponse = "\n### Response: "
terminate_response = [PreResponse] + ["Prompt:", "Response:"]
chat_turn_sep = chat_sep = '\n'
humanstr = PreInstruct
botstr = PreResponse
elif prompt_type in [PromptType.openai_chat.value, str(PromptType.openai_chat.value),
PromptType.openai_chat.name]:
# prompting and termination all handled by endpoint
preprompt = """"""
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
PreInstruct = ""
PreInput = None
PreResponse = ""
terminate_response = []
chat_turn_sep = chat_sep = '\n'
humanstr = None
botstr = None
elif prompt_type in [PromptType.vicuna11.value, str(PromptType.vicuna11.value),
PromptType.vicuna11.name]:
preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. """ if not (
chat and reduced) else ''
start = ''
promptB = promptA = '%s%s' % (preprompt, start)
eos = '</s>'
PreInstruct = """USER: """
PreInput = None
PreResponse = """ASSISTANT:"""
terminate_response = [PreResponse]
chat_sep = ' '
chat_turn_sep = eos
humanstr = PreInstruct
botstr = PreResponse
if making_context:
# when making context, want it to appear as-if LLM generated, which starts with space after :
PreResponse = PreResponse + ' '
else:
# normally LLM adds space after this, because was how trained.
# if add space here, non-unique tokenization will often make LLM produce wrong output
PreResponse = PreResponse
else:
raise RuntimeError("No such prompt_type=%s" % prompt_type)
if isinstance(terminate_response, (tuple, list)):
assert '' not in terminate_response, "Bad terminate_response"
ret_dict = dict(promptA=promptA, promptB=promptB, PreInstruct=PreInstruct, PreInput=PreInput,
PreResponse=PreResponse, terminate_response=terminate_response, chat_sep=chat_sep,
chat_turn_sep=chat_turn_sep,
humanstr=humanstr, botstr=botstr,
generates_leading_space=generates_leading_space)
if return_dict:
return ret_dict, prompt_dict_error
else:
return tuple(list(ret_dict.values()))
def generate_prompt(data_point, prompt_type, prompt_dict, chat, reduced, making_context):
context = data_point.get('context')
if context is None:
context = ''
instruction = data_point.get('instruction')
input = data_point.get('input')
output = data_point.get('output')
prompt_type = data_point.get('prompt_type', prompt_type)
prompt_dict = data_point.get('prompt_dict', prompt_dict)
assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
promptA, promptB, PreInstruct, PreInput, PreResponse, \
terminate_response, chat_sep, chat_turn_sep, humanstr, botstr, \
generates_leading_space = get_prompt(prompt_type, prompt_dict, chat,
context, reduced, making_context)
# could avoid if reduce=True, but too complex for parent functions to handle
prompt = context
if input and promptA:
prompt += f"""{promptA}"""
elif promptB:
prompt += f"""{promptB}"""
if instruction and PreInstruct is not None and input and PreInput is not None:
prompt += f"""{PreInstruct}{instruction}{PreInput}{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif instruction and input and PreInstruct is None and PreInput is not None:
prompt += f"""{PreInput}{instruction}
{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input and instruction and PreInput is None and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}
{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input and PreInput is not None:
prompt += f"""{PreInput}{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input and instruction and PreInput is not None:
prompt += f"""{PreInput}{instruction}{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input and instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input and instruction:
# i.e. for simple_instruct
prompt += f"""{instruction}: {input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif input:
prompt += f"""{input}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
elif instruction:
prompt += f"""{instruction}"""
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep)
if PreResponse is not None:
prompt += f"""{PreResponse}"""
pre_response = PreResponse # Don't use strip
else:
pre_response = ''
if output:
prompt += f"""{output}"""
return prompt, pre_response, terminate_response, chat_sep, chat_turn_sep
def inject_chatsep(prompt_type, prompt, chat_sep=None):
if chat_sep:
# only add new line if structured prompt, while 'plain' is just generation of next tokens from input
prompt += chat_sep
return prompt
class Prompter(object):
def __init__(self, prompt_type, prompt_dict, debug=False, chat=False, stream_output=False, repeat_penalty=True,
allowed_repeat_line_length=10):
self.prompt_type = prompt_type
self.prompt_dict = prompt_dict
self.debug = debug
self.chat = chat
self.stream_output = stream_output
self.repeat_penalty = repeat_penalty
self.allowed_repeat_line_length = allowed_repeat_line_length
self.prompt = None
context = "" # not for chat context
reduced = False # not for chat context
making_context = False # not for chat context
self.promptA, self.promptB, self.PreInstruct, self.PreInput, self.PreResponse, \
self.terminate_response, self.chat_sep, self.chat_turn_sep, self.humanstr, self.botstr, \
self.generates_leading_space = \
get_prompt(self.prompt_type, self.prompt_dict, chat, context, reduced, making_context)
self.pre_response = self.PreResponse
def generate_prompt(self, data_point, reduced=None):
"""
data_point['context'] is assumed to be like a system prompt or pre-conversation, not inserted after user prompt
:param data_point:
:param reduced:
:return:
"""
reduced = data_point.get('context') not in ['', None] if reduced is None else reduced
making_context = False # whether really making final prompt or just generating context
prompt, _, _, _, _ = generate_prompt(data_point, self.prompt_type, self.prompt_dict, self.chat, reduced,
making_context)
if self.debug:
print("prompt: %s" % prompt, flush=True)
# if have context, should have always reduced and only preappend promptA/B here
if data_point.get('context'):
if data_point.get('input') and self.promptA:
prompt = self.promptA + prompt
elif self.promptB:
prompt = self.promptB + prompt
self.prompt = prompt
return prompt
def get_response(self, outputs, prompt=None, sanitize_bot_response=False):
if isinstance(outputs, str):
outputs = [outputs]
if self.debug:
print("output:\n%s" % '\n\n'.join(outputs), flush=True)
if prompt is not None:
self.prompt = prompt
def clean_response(response):
meaningless_words = ['<pad>', '</s>', '<|endoftext|>']
for word in meaningless_words:
response = response.replace(word, "")
if sanitize_bot_response:
from better_profanity import profanity
response = profanity.censor(response)
if self.generates_leading_space and isinstance(response, str) and len(response) > 0 and response[0] == ' ':
response = response[1:]
return response
def clean_repeats(response):
lines = response.split('\n')
new_lines = []
[new_lines.append(line) for line in lines if
line not in new_lines or len(line) < self.allowed_repeat_line_length]
if self.debug and len(lines) != len(new_lines):
print("cleaned repeats: %s %s" % (len(lines), len(new_lines)), flush=True)
response = '\n'.join(new_lines)
return response
multi_output = len(outputs) > 1
for oi, output in enumerate(outputs):
if self.prompt_type in [PromptType.plain.value, str(PromptType.plain.value), PromptType.plain.name]:
output = clean_response(output)
elif prompt is None:
# then use most basic parsing like pipeline
if self.botstr in output:
if self.humanstr:
output = clean_response(output.split(self.botstr)[1].split(self.humanstr)[0])
else:
# i.e. use after bot but only up to next bot
output = clean_response(output.split(self.botstr)[1].split(self.botstr)[0])
else:
# output = clean_response(output)
# assume just not printed yet
output = ""
else:
# find first instance of prereponse
# prompt sometimes has odd characters, that mutate length,
# so can't go by length alone
if self.pre_response:
outputi = output.find(prompt)
if outputi >= 0:
output = output[outputi + len(prompt):]
allow_terminate = True
else:
# subtraction is risky due to space offsets sometimes, so only do if necessary
output = output[len(prompt) - len(self.pre_response):]
# [1] to avoid repeated pre_response, just take first (after prompt - pre_response for chat)
if self.pre_response in output:
output = output.split(self.pre_response)[1]
allow_terminate = True
else:
if output:
print("Failure of parsing or not enough output yet: %s" % output, flush=True)
allow_terminate = False
else:
allow_terminate = True
output = output[len(prompt):]
# clean after subtract prompt out, so correct removal of pre_response
output = clean_response(output)
if self.repeat_penalty:
output = clean_repeats(output)
if self.terminate_response and allow_terminate:
finds = []
for term in self.terminate_response:
finds.append(output.find(term))
finds = [x for x in finds if x >= 0]
if len(finds) > 0:
termi = finds[0]
output = output[:termi]
else:
output = output
if multi_output:
# prefix with output counter
output = "\n=========== Output %d\n\n" % (1 + oi) + output
if oi > 0:
# post fix outputs with seperator
output += '\n'
outputs[oi] = output
# join all outputs, only one extra new line between outputs
output = '\n'.join(outputs)
if self.debug:
print("outputclean:\n%s" % '\n\n'.join(outputs), flush=True)
return output
|