File size: 6,405 Bytes
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn.functional as F
import numpy as np
from scipy.signal import get_window
from librosa.util import pad_center, tiny
from librosa.filters import mel as librosa_mel_fn

from audioldm.audio.audio_processing import (
    dynamic_range_compression,
    dynamic_range_decompression,
    window_sumsquare,
)


class STFT(torch.nn.Module):
    """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""

    def __init__(self, filter_length, hop_length, win_length, window="hann"):
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.forward_transform = None
        scale = self.filter_length / self.hop_length
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack(
            [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
        )

        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        inverse_basis = torch.FloatTensor(
            np.linalg.pinv(scale * fourier_basis).T[:, None, :]
        )

        if window is not None:
            assert filter_length >= win_length
            # get window and zero center pad it to filter_length
            fft_window = get_window(window, win_length, fftbins=True)
            fft_window = pad_center(fft_window, size=filter_length)
            fft_window = torch.from_numpy(fft_window).float()

            # window the bases
            forward_basis *= fft_window
            inverse_basis *= fft_window

        self.register_buffer("forward_basis", forward_basis.float())
        self.register_buffer("inverse_basis", inverse_basis.float())

    def transform(self, input_data):
        num_batches = input_data.size(0)
        num_samples = input_data.size(1)

        self.num_samples = num_samples

        # similar to librosa, reflect-pad the input
        input_data = input_data.view(num_batches, 1, num_samples)
        input_data = F.pad(
            input_data.unsqueeze(1),
            (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
            mode="reflect",
        )
        input_data = input_data.squeeze(1)

        forward_transform = F.conv1d(
            input_data,
            torch.autograd.Variable(self.forward_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0,
        ).cpu()

        cutoff = int((self.filter_length / 2) + 1)
        real_part = forward_transform[:, :cutoff, :]
        imag_part = forward_transform[:, cutoff:, :]

        magnitude = torch.sqrt(real_part**2 + imag_part**2)
        phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))

        return magnitude, phase

    def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
        )

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            torch.autograd.Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0,
        )

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window,
                magnitude.size(-1),
                hop_length=self.hop_length,
                win_length=self.win_length,
                n_fft=self.filter_length,
                dtype=np.float32,
            )
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0]
            )
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False
            )
            window_sum = window_sum
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
                approx_nonzero_indices
            ]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
        inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]

        return inverse_transform

    def forward(self, input_data):
        self.magnitude, self.phase = self.transform(input_data)
        reconstruction = self.inverse(self.magnitude, self.phase)
        return reconstruction


class TacotronSTFT(torch.nn.Module):
    def __init__(
        self,
        filter_length,
        hop_length,
        win_length,
        n_mel_channels,
        sampling_rate,
        mel_fmin,
        mel_fmax,
    ):
        super(TacotronSTFT, self).__init__()
        self.n_mel_channels = n_mel_channels
        self.sampling_rate = sampling_rate
        self.stft_fn = STFT(filter_length, hop_length, win_length)
        mel_basis = librosa_mel_fn(
            sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax
        )
        mel_basis = torch.from_numpy(mel_basis).float()
        self.register_buffer("mel_basis", mel_basis)

    def spectral_normalize(self, magnitudes, normalize_fun):
        output = dynamic_range_compression(magnitudes, normalize_fun)
        return output

    def spectral_de_normalize(self, magnitudes):
        output = dynamic_range_decompression(magnitudes)
        return output

    def mel_spectrogram(self, y, normalize_fun=torch.log):
        """Computes mel-spectrograms from a batch of waves
        PARAMS
        ------
        y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]

        RETURNS
        -------
        mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
        """
        assert torch.min(y.data) >= -1, torch.min(y.data)
        assert torch.max(y.data) <= 1, torch.max(y.data)

        magnitudes, phases = self.stft_fn.transform(y)
        magnitudes = magnitudes.data
        mel_output = torch.matmul(self.mel_basis, magnitudes)
        mel_output = self.spectral_normalize(mel_output, normalize_fun)
        energy = torch.norm(magnitudes, dim=1)

        log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)

        return mel_output, log_magnitudes, energy