File size: 23,226 Bytes
7934381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import pandas as pd
import streamlit as st
import pickle
import json

# load the combined pipeline
with open('pipeline.pkl', 'rb') as file:
    pipeline = pickle.load(file)

# load the list of numeric columns
with open('normal_dist.json', 'r') as file:
    normal_dist = json.load(file)

with open('skewed_dist.json', 'r') as file:
    skewed_dist = json.load(file)

# load the list of categorical columns (object type)
with open('cat_cols.json', 'r') as file:
    cat_cols = json.load(file)

# load the list of categorical columns (number type)
with open('cat_num_cols.json', 'r') as file:
    cat_num_cols = json.load(file)

with open('columns_to_drop.json', 'r') as file:
    columns_to_drop = json.load(file)

def run():
    # membuat title
    st.title('Credit Default Prediction')
    st.subheader('Predicting Credit Default')
    st.markdown('---')
    st.write("# Debtor Information")
    # Buat form
    with st.form(key='form_credit'):
        st.write("#### Client's Personal Information")
        SK_ID_CURR = st.number_input('Client ID', min_value=0, max_value=9999999, value=0)
        NAME_CONTRACT_TYPE = st.selectbox('Contract Type', ('Cash loans', 'Revolving loans'))
        CODE_GENDER = st.radio('Clients gender', ('F', 'M'))
        FLAG_OWN_CAR = st.radio('Flag if the client owns a car', ('N', 'Y'))
        FLAG_OWN_REALTY= st.radio('Flag if client owns a house or flat', ('N', 'Y'))
        CNT_CHILDREN= st.number_input("Client's Children Count", min_value=0, max_value=20, value=0)

        st.markdown('---')
        st.write("#### Client's Financial Information")

        AMT_INCOME_TOTAL= st.number_input('Client Income', min_value=0, max_value=9999999, value=30000)
        AMT_CREDIT=st.number_input('Client Credit Amount', min_value=0, max_value=9999999, value=30000)
        AMT_ANNUITY=st.number_input('Client Annuity', min_value=0, max_value=9999999, value=3000)
        AMT_GOODS_PRICE=st.number_input('price of the goods for which the loan is given', min_value=0, max_value=9999999, value=50000)
        NAME_TYPE_SUITE=st.selectbox('Who was accompanying client when they were applying for the loan', ('Unaccompanied', 'Family', 'Spouse, partner', 'Group of people', 'Other_B', 'Children', 'Other_A'))
        NAME_INCOME_TYPE=st.selectbox('Clients income type', ('Working', 'State servant', 'Pensioner', 'Commercial associate', 'Businessman', 'Student', 'Unemployed'))
        NAME_EDUCATION_TYPE=st.selectbox('Level of highest education the client achieved', ('Higher education', 'Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree'))
        NAME_FAMILY_STATUS=st.selectbox('Family status of the client', ('Married', 'Single / not married', 'Civil marriage', 'Widow', 'Separated'))
        NAME_HOUSING_TYPE=st.selectbox('What is the housing situation of the client', ('House / apartment', 'With parents', 'Rented apartment', 'Municipal apartment', 'Office apartment', 'Co-op apartment'))
        REGION_POPULATION_RELATIVE=st.slider('Normalized population of region where client lives', min_value=0.000000, max_value=0.080000, value=0.0200, step=0.000001)

        st.markdown('---')

        DAYS_BIRTH_= st.number_input('How many days before the client was born', min_value=7000, max_value=30000, value=15000)
        DAYS_BIRTH = -1 * DAYS_BIRTH_
        DAYS_EMPLOYED_= st.number_input('How many days before the application the person started current employment', min_value=0, max_value=30000, value=5000)
        DAYS_EMPLOYED = -1* DAYS_EMPLOYED_
        DAYS_REGISTRATION_= st.number_input('How many days before the application did client change his registration', min_value=0, max_value=30000, value=5000)
        DAYS_REGISTRATION = -1* DAYS_REGISTRATION_
        DAYS_ID_PUBLISH_ = st.number_input('How many days before the application did client change the identity document with which he applied for the loan', min_value=0, max_value=30000, value=5000)
        DAYS_ID_PUBLISH = -1* DAYS_ID_PUBLISH_

        st.markdown('---')
        OWN_CAR_AGE=st.number_input('Age of client\'s car', min_value=0, max_value=100, value=0)

        st.markdown('---')
        FLAG_MOBIL_=st.radio('Did client provide mobile phone', ('Yes', 'No'), index=0)
        if FLAG_MOBIL_ == 'No':
            FLAG_MOBIL = 0
        else:
            FLAG_MOBIL = 1
        FLAG_EMP_PHONE_=st.radio('Did client provide emp phone', ('Yes', 'No'), index=0)
        if FLAG_EMP_PHONE_ == 'No':
            FLAG_EMP_PHONE = 0
        else:
            FLAG_EMP_PHONE = 1
        FLAG_WORK_PHONE_=st.radio('Did client provide work phone', ('Yes', 'No'), index=0)
        if FLAG_WORK_PHONE_ == 'No':
            FLAG_WORK_PHONE = 0
        else:
            FLAG_WORK_PHONE = 1
        FLAG_CONT_MOBILE_=st.radio('Was mobile phone reachable', ('Yes', 'No'), index=0)
        if FLAG_CONT_MOBILE_ == 'No':
            FLAG_CONT_MOBILE = 0
        else:
            FLAG_CONT_MOBILE = 1
        FLAG_PHONE_=st.radio('Did client provide home phone', ('Yes', 'No'), index=0)
        if FLAG_PHONE_ == 'No':
            FLAG_PHONE = 0
        else:
            FLAG_PHONE = 1
        FLAG_EMAIL_=st.radio('Did client provide email', ('Yes', 'No'), index=0)
        if FLAG_EMAIL_ == 'No':
            FLAG_EMAIL = 0
        else:
            FLAG_EMAIL = 1
        st.markdown('---')
        OCCUPATION_TYPE= st.selectbox('What kind of occupation does the client have', ('Low-skill Laborers', 'Drivers', 'Sales staff', 
                                                                                                           'High skill tech staff', 'Core staff', 'Laborers', 
                                                                                                           'Managers', 'Accountants', 'Medicine staff', 
                                                                                                           'Security staff', 'Private service staff', 'Secretaries', 
                                                                                                           'Cleaning staff', 'Cooking staff', 'HR staff', 
                                                                                                           'Waiters/barmen staff', 'Realty agents', 'IT staff'))
        CNT_FAM_MEMBERS= st.number_input("How many family members does client have", min_value=0, max_value=20, value=0)
        REGION_RATING_CLIENT= st.radio('Our rating of the region where client lives', (1, 2, 3), index=0)
        REGION_RATING_CLIENT_W_CITY= st.radio('Our rating of the region where client lives with taking city into account', (1, 2, 3), index=0)
        st.markdown('---')
        WEEKDAY_APPR_PROCESS_START= st.radio('Day of the week when the client apply for the loan', ('MONDAY', 'TUESDAY', 'WEDNESDAY', 'THURSDAY', 'FRIDAY', 'SATURDAY', 'SUNDAY'))
        HOUR_APPR_PROCESS_START= st.number_input('Hour when client apply for the loan', min_value=0, max_value=24, value=0, step=1, help="Input rounded value.")

        st.markdown('---')
        st.write("#### Client's Address in Region")

        REG_REGION_NOT_LIVE_REGION_=st.radio('Permanent address does not match contact address', ('No', 'Yes'))
        if REG_REGION_NOT_LIVE_REGION_ == 'No':
            REG_REGION_NOT_LIVE_REGION = 0
        else:
            REG_REGION_NOT_LIVE_REGION = 1
        REG_REGION_NOT_WORK_REGION_=st.radio('Permanent address does not match work address', ('No', 'Yes'))
        if REG_REGION_NOT_WORK_REGION_ == 'No':
            REG_REGION_NOT_WORK_REGION = 0
        else:
            REG_REGION_NOT_WORK_REGION = 1
        LIVE_REGION_NOT_WORK_REGION= st.radio('Contact address does not match work address', ('No', 'Yes'))
        if LIVE_REGION_NOT_WORK_REGION == 'No':
            LIVE_REGION_NOT_WORK_REGION = 0
        else:
            LIVE_REGION_NOT_WORK_REGION = 1
        st.markdown('---')
        st.write("#### Client's Address in City")

        REG_CITY_NOT_LIVE_CITY= st.radio('Contact address (city) does not match contact address', ('No', 'Yes'))
        if REG_CITY_NOT_LIVE_CITY == 'No':
            REG_CITY_NOT_LIVE_CITY = 0
        else:
            REG_CITY_NOT_LIVE_CITY = 1
        REG_CITY_NOT_WORK_CITY= st.radio('Permanent address (city) does not match work address', ('No', 'Yes'))
        if REG_CITY_NOT_WORK_CITY == 'No':
            REG_CITY_NOT_WORK_CITY = 0
        else:
            REG_CITY_NOT_WORK_CITY = 1
        LIVE_CITY_NOT_WORK_CITY= st.radio('Contact address (city) does not match work address', ('No', 'Yes'))
        if LIVE_CITY_NOT_WORK_CITY == 'No':
            LIVE_CITY_NOT_WORK_CITY = 0
        else:
            LIVE_CITY_NOT_WORK_CITY = 1
        ORGANIZATION_TYPE= st.selectbox('Type of organization where client works', ('Kindergarten', 'Self-employed', 'Transport: type 3',
                                                                                    'Business Entity Type 3', 'Government', 'Industry: type 9',
                                                                                    'School', 'Trade: type 2', 'XNA', 'Services', 'Bank',
                                                                                    'Industry: type 3', 'Other', 'Trade: type 6', 'Industry: type 12',
                                                                                    'Trade: type 7', 'Postal', 'Medicine', 'Housing',
                                                                                    'Business Entity Type 2', 'Construction', 'Military',
                                                                                    'Industry: type 4', 'Trade: type 3', 'Legal Services', 'Security',
                                                                                    'Industry: type 11', 'University', 'Business Entity Type 1',
                                                                                    'Agriculture', 'Security Ministries', 'Transport: type 2',
                                                                                    'Industry: type 7', 'Transport: type 4', 'Telecom', 'Emergency',
                                                                                    'Police', 'Industry: type 1', 'Transport: type 1', 'Electricity',
                                                                                    'Industry: type 5', 'Hotel', 'Restaurant', 'Advertising', 'Mobile',
                                                                                    'Trade: type 1', 'Industry: type 8', 'Realtor', 'Cleaning',
                                                                                    'Industry: type 2', 'Trade: type 4', 'Industry: type 6', 'Culture',
                                                                                    'Insurance', 'Religion', 'Industry: type 13', 'Industry: type 10',
                                                                                    'Trade: type 5'))
        
        st.markdown('---')
        st.write("#### Credit Score")
        EXT_SOURCE_1= st.slider('Credit Score from Source 1', min_value=0.0, max_value=20.0, value=0.1, step=1.0, help="Input rounded value.")
        EXT_SOURCE_2= st.slider('Credit Score from Source 2', min_value=0.0, max_value=20.0, value=0.1, step=1.0, help="Input rounded value.")
        EXT_SOURCE_3= st.slider('Credit Score from Source 3', min_value=0.0, max_value=20.0, value=0.1, step=1.0, help="Input rounded value.")
        st.markdown('---')

        st.write("#### Client's social surroundings")
        OBS_30_CNT_SOCIAL_CIRCLE= st.number_input('Observation 30 days past due',min_value=0, max_value=50, value=0, step=1, help="Input rounded value.")
        DEF_30_CNT_SOCIAL_CIRCLE= st.number_input('Number of default 30 days past due', min_value=0, max_value=50, value=0, step=1, help="Input rounded value.")
        OBS_60_CNT_SOCIAL_CIRCLE= st.number_input('Observation 60 days past due', min_value=0, max_value=50, value=0, step=1, help="Input rounded value.")
        DEF_60_CNT_SOCIAL_CIRCLE= st.number_input('Number of default 60 days past due', min_value=0, max_value=50, value=0, step=1, help="Input rounded value.")

        DAYS_LAST_PHONE_CHANGE_ = st.number_input('How many days before application did client change phone', min_value=0, max_value=10000, value=1000)
        DAYS_LAST_PHONE_CHANGE = -1 * DAYS_LAST_PHONE_CHANGE_

        st.markdown('---')

        st.write("#### Client's Document")
        flag_document_2= st.radio('Did client provide Identification?', ('No', 'Yes'))
        if flag_document_2 == 'No':
            FLAG_DOCUMENT_2 = 0
        else:
            FLAG_DOCUMENT_2 = 1
        FLAG_DOCUMENT_3_= st.radio('Did client provide proof of address?', ('No', 'Yes'))
        if FLAG_DOCUMENT_3_ == 'No':
            FLAG_DOCUMENT_3 = 0
        else:
            FLAG_DOCUMENT_3 = 1
        FLAG_DOCUMENT_4_= st.radio('Did client provide bank statement?', ('No', 'Yes'))
        if FLAG_DOCUMENT_4_ == 'No':
            FLAG_DOCUMENT_4 = 0
        else:
            FLAG_DOCUMENT_4 = 1
        FLAG_DOCUMENT_5_= st.radio('Did client provide employment certificate?', ('No', 'Yes'))
        if FLAG_DOCUMENT_5_ == 'No':
            FLAG_DOCUMENT_5 = 0
        else:
            FLAG_DOCUMENT_5 = 1
        FLAG_DOCUMENT_6_= st.radio('Did client provide other document (code = 6)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_6_ == 'No':
            FLAG_DOCUMENT_6 = 0
        else:
            FLAG_DOCUMENT_6 = 1
        FLAG_DOCUMENT_7_= st.radio('Did client provide library card?', ('No', 'Yes'))
        if FLAG_DOCUMENT_7_ == 'No':
            FLAG_DOCUMENT_7 = 0
        else:
            FLAG_DOCUMENT_7 = 1       
        FLAG_DOCUMENT_8_= st.radio('Did client provide car registration?', ('No', 'Yes'))
        if FLAG_DOCUMENT_8_ == 'No':
            FLAG_DOCUMENT_8 = 0
        else:
            FLAG_DOCUMENT_8 = 1
        FLAG_DOCUMENT_9_= st.radio('Did client provide passport?', ('No', 'Yes'))
        if FLAG_DOCUMENT_9_ == 'No':
            FLAG_DOCUMENT_9 = 0
        else:
            FLAG_DOCUMENT_9 = 1

        FLAG_DOCUMENT_10_= st.radio("Did client provide driver's license?", ('No', 'Yes'))
        if FLAG_DOCUMENT_10_ == 'No':
            FLAG_DOCUMENT_10 = 0
        else:
            FLAG_DOCUMENT_10 = 1

        FLAG_DOCUMENT_11_= st.radio('Did client provide other document (code = 11)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_11_ == 'No':
            FLAG_DOCUMENT_11 = 0
        else:
            FLAG_DOCUMENT_11 = 1

        FLAG_DOCUMENT_12_= st.radio('Did client provide other document (code = 12)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_12_ == 'No':
            FLAG_DOCUMENT_12 = 0
        else:
            FLAG_DOCUMENT_12 = 1

        FLAG_DOCUMENT_13_= st.radio('Did client provide other document (code = 13)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_13_ == 'No':
            FLAG_DOCUMENT_13 = 0
        else:
            FLAG_DOCUMENT_13 = 1

        FLAG_DOCUMENT_14_= st.radio('Did client provide other document (code = 14)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_14_ == 'No':
            FLAG_DOCUMENT_14 = 0
        else:
            FLAG_DOCUMENT_14 = 1

        FLAG_DOCUMENT_15_= st.radio('Did client provide other document (code = 15)', ('No', 'Yes'))
        if FLAG_DOCUMENT_15_ == 'No':
            FLAG_DOCUMENT_15 = 0
        else:
            FLAG_DOCUMENT_15 = 1

        FLAG_DOCUMENT_16_= st.radio('Did client provide other document (code = 16)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_16_ == 'No':
            FLAG_DOCUMENT_16 = 0
        else:
            FLAG_DOCUMENT_16 = 1

        FLAG_DOCUMENT_17_= st.radio('Did client provide other document (code = 17)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_17_ == 'No':
            FLAG_DOCUMENT_17 = 0
        else:
            FLAG_DOCUMENT_17 = 1

        FLAG_DOCUMENT_18_= st.radio('Did client provide other document (code = 18)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_18_ == 'No':
            FLAG_DOCUMENT_18 = 0
        else:
            FLAG_DOCUMENT_18 = 1

        FLAG_DOCUMENT_19_= st.radio('Did client provide other document (code = 19)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_19_ == 'No':
            FLAG_DOCUMENT_19 = 0
        else:
            FLAG_DOCUMENT_19 = 1

        FLAG_DOCUMENT_20_= st.radio('Did client provide other document (code = 20)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_20_ == 'No':
            FLAG_DOCUMENT_20 = 0
        else:
            FLAG_DOCUMENT_20 = 1

        FLAG_DOCUMENT_21_= st.radio('Did client provide other document (code = 21)?', ('No', 'Yes'))
        if FLAG_DOCUMENT_21_ == 'No':
            FLAG_DOCUMENT_21 = 0
        else:
            FLAG_DOCUMENT_21 = 1

        st.markdown('---')

        st.write("#### Number of Enquiries")

        AMT_REQ_CREDIT_BUREAU_HOUR= st.slider('One hour before application', min_value=0, max_value=24, value=0, step=1, help="Input rounded value.")
        AMT_REQ_CREDIT_BUREAU_DAY= st.slider('One day before application', min_value=0, max_value=31, value=0, step=1, help="Input rounded value.")
        AMT_REQ_CREDIT_BUREAU_WEEK= st.slider('One week before application', min_value=0, max_value=10, value=0, step=1, help="Input rounded value.")
        AMT_REQ_CREDIT_BUREAU_MON= st.slider('One month before application', min_value=0, max_value=24, value=0, step=1, help="Input rounded value.")
        AMT_REQ_CREDIT_BUREAU_QRT= st.slider('Three months before application', min_value=0, max_value=12, value=0, step=1, help="Input rounded value.")
        AMT_REQ_CREDIT_BUREAU_YEAR= st.slider('One year before application', min_value=0, max_value=30, value=0, step=1, help="Input rounded value.")

        st.markdown('---')
        AGE = st.number_input('AGE', min_value=18, max_value=100, value=0)
        YEAR_EMPLOYED = st.number_input('YEAR_EMPLOYED', min_value=1000, max_value=2024, value=0)
        YEAR_REGISTRATION = st.number_input('YEAR_REGISTRATION', min_value=1000, max_value=2024, value=0)
        
        st.markdown('---')
        submitted = st.form_submit_button('Predict')

        # dataframe
        st.write("# Debtor Summary")
        data_inf = {
                    "SK_ID_CURR":SK_ID_CURR,
                    "NAME_CONTRACT_TYPE":NAME_CONTRACT_TYPE,
                    "CODE_GENDER":CODE_GENDER,
                    "FLAG_OWN_CAR":FLAG_OWN_CAR,
                    "FLAG_OWN_REALTY":FLAG_OWN_REALTY,
                    "CNT_CHILDREN":CNT_CHILDREN,
                    "AMT_INCOME_TOTAL":AMT_INCOME_TOTAL,
                    "AMT_CREDIT":AMT_CREDIT,
                    "AMT_ANNUITY":AMT_ANNUITY,
                    "AMT_GOODS_PRICE":AMT_GOODS_PRICE,
                    "NAME_TYPE_SUITE":NAME_TYPE_SUITE,
                    "NAME_INCOME_TYPE":NAME_INCOME_TYPE,
                    "NAME_EDUCATION_TYPE":NAME_EDUCATION_TYPE,
                    "NAME_FAMILY_STATUS":NAME_FAMILY_STATUS,
                    "NAME_HOUSING_TYPE":NAME_HOUSING_TYPE,
                    "REGION_POPULATION_RELATIVE":REGION_POPULATION_RELATIVE,
                    "DAYS_BIRTH":DAYS_BIRTH,
                    "DAYS_EMPLOYED":DAYS_EMPLOYED,
                    "DAYS_REGISTRATION":DAYS_REGISTRATION,
                    "DAYS_ID_PUBLISH":DAYS_ID_PUBLISH,
                    "OWN_CAR_AGE":OWN_CAR_AGE,
                    "FLAG_MOBIL":FLAG_MOBIL,
                    "FLAG_EMP_PHONE":FLAG_EMP_PHONE,
                    "FLAG_WORK_PHONE":FLAG_WORK_PHONE,
                    "FLAG_CONT_MOBILE":FLAG_CONT_MOBILE,
                    "FLAG_PHONE":FLAG_PHONE,
                    "FLAG_EMAIL":FLAG_EMAIL,
                    "OCCUPATION_TYPE":OCCUPATION_TYPE,
                    "CNT_FAM_MEMBERS":CNT_FAM_MEMBERS,
                    "REGION_RATING_CLIENT":REGION_RATING_CLIENT,
                    "REGION_RATING_CLIENT_W_CITY":REGION_RATING_CLIENT_W_CITY,
                    "WEEKDAY_APPR_PROCESS_START":WEEKDAY_APPR_PROCESS_START,
                    "HOUR_APPR_PROCESS_START":HOUR_APPR_PROCESS_START,
                    "REG_REGION_NOT_LIVE_REGION":REG_REGION_NOT_LIVE_REGION,
                    "REG_REGION_NOT_WORK_REGION":REG_REGION_NOT_WORK_REGION,
                    "LIVE_REGION_NOT_WORK_REGION":LIVE_REGION_NOT_WORK_REGION,
                    "REG_CITY_NOT_LIVE_CITY":REG_CITY_NOT_LIVE_CITY,
                    "REG_CITY_NOT_WORK_CITY":REG_CITY_NOT_WORK_CITY,
                    "LIVE_CITY_NOT_WORK_CITY":LIVE_CITY_NOT_WORK_CITY,
                    "ORGANIZATION_TYPE":ORGANIZATION_TYPE,
                    "EXT_SOURCE_1":EXT_SOURCE_1,
                    "EXT_SOURCE_2":EXT_SOURCE_2,
                    "EXT_SOURCE_3":EXT_SOURCE_3,
                    "OBS_30_CNT_SOCIAL_CIRCLE":OBS_30_CNT_SOCIAL_CIRCLE,
                    "DEF_30_CNT_SOCIAL_CIRCLE":DEF_30_CNT_SOCIAL_CIRCLE,
                    "OBS_60_CNT_SOCIAL_CIRCLE":OBS_60_CNT_SOCIAL_CIRCLE,
                    "DEF_60_CNT_SOCIAL_CIRCLE":DEF_60_CNT_SOCIAL_CIRCLE,
                    "DAYS_LAST_PHONE_CHANGE":DAYS_LAST_PHONE_CHANGE,
                    "FLAG_DOCUMENT_2":FLAG_DOCUMENT_2,
                    "FLAG_DOCUMENT_3":FLAG_DOCUMENT_3,
                    "FLAG_DOCUMENT_4":FLAG_DOCUMENT_4,
                    "FLAG_DOCUMENT_5":FLAG_DOCUMENT_5,
                    "FLAG_DOCUMENT_6":FLAG_DOCUMENT_6,
                    "FLAG_DOCUMENT_7":FLAG_DOCUMENT_7,
                    "FLAG_DOCUMENT_8":FLAG_DOCUMENT_8,
                    "FLAG_DOCUMENT_9":FLAG_DOCUMENT_9,
                    "FLAG_DOCUMENT_10":FLAG_DOCUMENT_10,
                    "FLAG_DOCUMENT_11":FLAG_DOCUMENT_11,
                    "FLAG_DOCUMENT_12":FLAG_DOCUMENT_12,
                    "FLAG_DOCUMENT_13":FLAG_DOCUMENT_13,
                    "FLAG_DOCUMENT_14":FLAG_DOCUMENT_14,
                    "FLAG_DOCUMENT_15":FLAG_DOCUMENT_15,
                    "FLAG_DOCUMENT_16":FLAG_DOCUMENT_16,
                    "FLAG_DOCUMENT_17":FLAG_DOCUMENT_17,
                    "FLAG_DOCUMENT_18":FLAG_DOCUMENT_18,
                    "FLAG_DOCUMENT_19":FLAG_DOCUMENT_19,
                    "FLAG_DOCUMENT_20":FLAG_DOCUMENT_20,
                    "FLAG_DOCUMENT_21":FLAG_DOCUMENT_21,
                    "AMT_REQ_CREDIT_BUREAU_HOUR":AMT_REQ_CREDIT_BUREAU_HOUR,
                    "AMT_REQ_CREDIT_BUREAU_DAY":AMT_REQ_CREDIT_BUREAU_DAY,
                    "AMT_REQ_CREDIT_BUREAU_WEEK":AMT_REQ_CREDIT_BUREAU_WEEK,
                    "AMT_REQ_CREDIT_BUREAU_MON":AMT_REQ_CREDIT_BUREAU_MON,
                    "AMT_REQ_CREDIT_BUREAU_QRT":AMT_REQ_CREDIT_BUREAU_QRT,
                    "AMT_REQ_CREDIT_BUREAU_YEAR":AMT_REQ_CREDIT_BUREAU_YEAR,
                    "AGE":AGE,
                    "YEAR_EMPLOYED":YEAR_EMPLOYED,
                    "YEAR_REGISTRATION":YEAR_REGISTRATION

        }

        data_inf = pd.DataFrame([data_inf])
        st.dataframe(data_inf.T, width=800, height=495)

    if submitted:
        # Predict using created pipeline
        y_pred_inf = pipeline.predict(data_inf)
        if y_pred_inf == 0:
            pred = 'Not Default'
        else:
            pred = 'Default'
        st.markdown('---')
        st.write('# Prediction : ', (pred))
        st.markdown('---')

if __name__ == '__main__':
    run()