File size: 10,825 Bytes
483de47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torchvision.transforms as transforms
from torch.nn.parallel.data_parallel import DataParallel
import torch.backends.cudnn as cudnn
import argparse
import json
import torch
from PIL import Image
import matplotlib.pyplot as plt
import os
import cv2
import numpy as np
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
# OSX
import sys
sys.path.insert(0, 'grounded-sam-osx')
from osx import get_model
from config import cfg
from utils.preprocessing import load_img, process_bbox, generate_patch_image
from utils.human_models import smpl_x
os.environ["PYOPENGL_PLATFORM"] = "egl"
from utils.vis import render_mesh, save_obj
cudnn.benchmark = True
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
if 'person' in label.lower() or 'human' in label.lower():
color = 'green'
else:
color = 'blue'
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor=color, facecolor=(0, 0, 0, 0), lw=2))
ax.text(x0, y0-5, label, fontsize=5, color='white',bbox={'facecolor': color, 'alpha': 0.7, 'pad': 1, 'edgecolor': 'none'})
def save_mask_data(output_dir, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = [{
'value': value,
'label': 'background'
}]
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data.append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
json.dump(json_data, f)
def bbox_resize(bbox, scale=1.0):
center = (bbox[2:] + bbox[:2]) / 2
new_size = (bbox[2:] - bbox[:2]) * scale
new_bbox = torch.cat((center - new_size / 2, center + new_size / 2))
return new_bbox
def mesh_recovery(original_img, bboxes):
transform = transforms.ToTensor()
original_img_height, original_img_width = original_img.shape[:2]
vis_img = original_img.copy()
for bbox in bboxes: # [x1, y1, x2, y2]
bbox = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]] # xyxy -> xyhw
bbox = process_bbox(bbox, original_img_width, original_img_height)
img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, cfg.input_img_shape)
img = transform(img.astype(np.float32)) / 255
img = img.cuda()[None, :, :, :]
# forward
inputs = {'img': img}
with torch.no_grad():
out = model(inputs, 'test')
mesh = out['smplx_mesh_cam'].detach().cpu().numpy()[0]
# # save mesh
# save_obj(mesh, smpl_x.face, 'output.obj')
focal = [cfg.focal[0] / cfg.input_body_shape[1] * bbox[2], cfg.focal[1] / cfg.input_body_shape[0] * bbox[3]]
princpt = [cfg.princpt[0] / cfg.input_body_shape[1] * bbox[2] + bbox[0],
cfg.princpt[1] / cfg.input_body_shape[0] * bbox[3] + bbox[1]]
rendered_img, _ = render_mesh(vis_img[:, :, ::-1], mesh, smpl_x.face, {'focal': focal, 'princpt': princpt})
vis_img = rendered_img.copy()
return rendered_img
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--config", type=str, required=True, help="path to config file")
parser.add_argument(
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--osx_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
args = parser.parse_args()
# cfg
config_file = args.config # change the path of the model config file
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
sam_checkpoint = args.sam_checkpoint
osx_checkpoint = args.osx_checkpoint
image_path = args.input_image
text_prompt = args.text_prompt
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
device = args.device
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, device=device)
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# run grounding dino model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# initialize SAM
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
# initialize OSX
model = get_model()
model = DataParallel(model).cuda()
ckpt = torch.load(osx_checkpoint)
model.load_state_dict(ckpt['network'], strict=False)
model.eval()
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
# scale up the human bboxes
boxes_human = []
for i, label in enumerate(pred_phrases):
if 'person' in label.lower() or 'human' in label.lower():
boxes_filt[i] = bbox_resize(boxes_filt[i], scale=1.1)
boxes_human.append(boxes_filt[i])
# predict and visualize 3d human mesh
for i, label in enumerate(pred_phrases):
if 'person' in label.lower() or 'man' in label.lower():
boxes_human.append(boxes_filt[i])
rendered_img = mesh_recovery(image, boxes_human)
cv2.imwrite(os.path.join(output_dir, "grounded_sam_osx_output.jpg"), rendered_img)
# draw output image
fig, (plt1, plt2) = plt.subplots(ncols=2, figsize=(10, 20), gridspec_kw={'wspace':0, 'hspace':0})
plt1.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt1, random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt1, label)
rendered_img = cv2.imread(os.path.join(output_dir, "grounded_sam_osx_output.jpg"))
plt2.imshow(rendered_img)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt2, label)
plt1.axis('off')
plt2.axis('off')
plt.savefig(
os.path.join(output_dir, "grounded_sam_osx_output.jpg"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
|