File size: 10,801 Bytes
c2a30b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import numpy as np
import pandas as pd

from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import classification_report, confusion_matrix

import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader

from transformers import get_linear_schedule_with_warmup, AutoTokenizer, AutoModel, logging

import warnings
import time
import pickle
warnings.filterwarnings("ignore")

logging.set_verbosity_error()

# Function to set seed for reproducibility
def seed_everything(seed_value):
    np.random.seed(seed_value)  # Set seed for numpy random numbers
    torch.manual_seed(seed_value)  # Set seed for PyTorch random numbers

    if torch.cuda.is_available():  # If CUDA is available, set CUDA seed
        torch.cuda.manual_seed(seed_value)
        torch.cuda.manual_seed_all(seed_value)
        torch.backends.cudnn.deterministic = True  # Ensure deterministic behavior
        torch.backends.cudnn.benchmark = True  # Improve performance by allowing cudnn benchmarking

seed_everything(86)  # Set seed value for reproducibility

model_name = "bluenguyen/longformer-phobert-base-4096"  # Pretrained model name
max_len = 512  # Maximum sequence length for tokenizer (512, but can use 256 if phobertbase)
n_classes = 13  # Number of output classes
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)  # Load tokenizer

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # Set device to GPU if available, otherwise CPU
EPOCHS = 5  # Number of training epochs
N_SPLITS = 5  # Number of folds for cross-validation

TRAIN_PATH = "data/train_data_162k.json"  
TEST_PATH = "data/test_data_162k.json"  
VAL_PATH = "data/val_data_162k.json"  

# Function to read data from JSON file
def get_data(path):
    df = pd.read_json(path, lines=True)
    return df

# Read the data from JSON files
train_df = get_data(TRAIN_PATH)
test_df = get_data(TEST_PATH)
valid_df = get_data(VAL_PATH)

# Combine train and validation data
train_df = pd.concat([train_df, valid_df], ignore_index=True)

# Apply StratifiedKFold
skf = StratifiedKFold(n_splits=N_SPLITS)
for fold, (_, val_) in enumerate(skf.split(X=train_df, y=train_df.category)):
    train_df.loc[val_, "kfold"] = fold

class NewsDataset(Dataset):
    def __init__(self, df, tokenizer, max_len):
        self.df = df
        self.max_len = max_len
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.df)

    def __getitem__(self, index):
        """
        To customize dataset, inherit from Dataset class and implement
        __len__ & __getitem__
        __getitem__ should return
            data:
                input_ids
                attention_masks
                text
                targets
        """
        row = self.df.iloc[index]
        text, label = self.get_input_data(row)

        # Encode_plus will:
        # (1) split text into token
        # (2) Add the '[CLS]' and '[SEP]' token to the start and end
        # (3) Truncate/Pad sentence to max length
        # (4) Map token to their IDS
        # (5) Create attention mask
        # (6) Return a dictionary of outputs
        encoding = self.tokenizer.encode_plus(
            text,
            truncation=True,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            return_attention_mask=True,
            return_token_type_ids=False,
            return_tensors='pt',
        )

        return {
            'text': text,
            'input_ids': encoding['input_ids'].flatten(),
            'attention_masks': encoding['attention_mask'].flatten(),
            'targets': torch.tensor(label, dtype=torch.long),
        }


    def labelencoder(self, text):
        label_map = {
            'Cong nghe': 0, 'Doi song': 1, 'Giai tri': 2, 'Giao duc': 3, 'Khoa hoc': 4,
            'Kinh te': 5, 'Nha dat': 6, 'Phap luat': 7, 'The gioi': 8, 'The thao': 9,
            'Van hoa': 10, 'Xa hoi': 11, 'Xe co': 12
        }
        return label_map.get(text, -1)

    def get_input_data(self, row):
        text = row['processed_content']
        label = self.labelencoder(row['category'])
        return text, label

class NewsClassifier(nn.Module):
    def __init__(self, n_classes, model_name):
        super(NewsClassifier, self).__init__()
        # Load a pre-trained BERT model
        self.bert = AutoModel.from_pretrained(model_name)
        # Dropout layer to prevent overfitting
        self.drop = nn.Dropout(p=0.3)
        # Fully-connected layer to convert BERT's hidden state to the number of classes to predict
        self.fc = nn.Linear(self.bert.config.hidden_size, n_classes)
        # Initialize weights and biases of the fully-connected layer using the normal distribution method
        nn.init.normal_(self.fc.weight, std=0.02)
        nn.init.normal_(self.fc.bias, 0)

    def forward(self, input_ids, attention_mask):
        # Get the output from the BERT model
        last_hidden_state, output = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=False
        )
        # Apply dropout
        x = self.drop(output)
        # Pass through the fully-connected layer to get predictions
        x = self.fc(x)
        return x

def prepare_loaders(df, fold):
    df_train = df[df.kfold != fold].reset_index(drop=True)
    df_valid = df[df.kfold == fold].reset_index(drop=True)

    train_dataset = NewsDataset(df_train, tokenizer, max_len)
    valid_dataset = NewsDataset(df_valid, tokenizer, max_len)

    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=2)
    valid_loader = DataLoader(valid_dataset, batch_size=16, shuffle=True, num_workers=2)

    return train_loader, valid_loader

# Function to train the model for one epoch
def train(model, criterion, optimizer, train_loader, lr_scheduler):
    model.train()  # Set the model to training mode
    losses = []  # List to store losses during training
    correct = 0  # Variable to store number of correct predictions

    # Iterate over batches in the training data loader
    for batch_idx, data in enumerate(train_loader):
        input_ids = data['input_ids'].to(device)  # Move input_ids to GPU/CPU
        attention_mask = data['attention_masks'].to(device)  # Move attention_mask to GPU/CPU
        targets = data['targets'].to(device)  # Move targets to GPU/CPU

        optimizer.zero_grad()  # Clear gradients from previous iteration
        outputs = model(  # Forward pass through the model
            input_ids=input_ids,
            attention_mask=attention_mask
        )

        loss = criterion(outputs, targets)  # Calculate the loss
        _, pred = torch.max(outputs, dim=1)  # Get the predicted labels

        correct += torch.sum(pred == targets)  # Count correct predictions
        losses.append(loss.item())  # Append the current loss value to losses list
        loss.backward()  # Backpropagation: compute gradients
        nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)  # Clip gradients to prevent exploding gradients
        optimizer.step()  # Update model parameters
        lr_scheduler.step()  # Update learning rate scheduler

        # Print training progress every 1000 batches
        if batch_idx % 1000 == 0:
            print(f'Batch {batch_idx}/{len(train_loader)} - Loss: {loss.item():.4f}, Accuracy: {correct.double() / ((batch_idx + 1) * train_loader.batch_size):.4f}')

    train_accuracy = correct.double() / len(train_loader.dataset)  # Calculate training accuracy
    avg_loss = np.mean(losses)  # Calculate average loss
    print(f'Train Accuracy: {train_accuracy:.4f} Loss: {avg_loss:.4f}')

# Function to evaluate the model
def eval(model, criterion, valid_loader, test_loader=None):
    model.eval()  # Set the model to evaluation mode
    losses = []  # List to store losses during evaluation
    correct = 0  # Variable to store number of correct predictions

    with torch.no_grad():  # Disable gradient calculation for evaluation
        data_loader = test_loader if test_loader else valid_loader  # Choose between test and validation data loader
        for batch_idx, data in enumerate(data_loader):
            input_ids = data['input_ids'].to(device)  # Move input_ids to GPU/CPU
            attention_mask = data['attention_masks'].to(device)  # Move attention_mask to GPU/CPU
            targets = data['targets'].to(device)  # Move targets to GPU/CPU

            outputs = model(  # Forward pass through the model
                input_ids=input_ids,
                attention_mask=attention_mask
            )

            loss = criterion(outputs, targets)  # Calculate the loss
            _, pred = torch.max(outputs, dim=1)  # Get the predicted labels

            correct += torch.sum(pred == targets)  # Count correct predictions
            losses.append(loss.item())  # Append the current loss value to losses list

    dataset_size = len(test_loader.dataset) if test_loader else len(valid_loader.dataset)  # Determine dataset size
    accuracy = correct.double() / dataset_size  # Calculate accuracy
    avg_loss = np.mean(losses)  # Calculate average loss

    # Print evaluation results (either test or validation)
    if test_loader:
        print(f'Test Accuracy: {accuracy:.4f} Loss: {avg_loss:.4f}')
    else:
        print(f'Valid Accuracy: {accuracy:.4f} Loss: {avg_loss:.4f}')

    return accuracy  # Return accuracy for further analysis or logging

total_start_time = time.time()

# Main training loop
for fold in range(skf.n_splits):
    print(f'----------- Fold: {fold + 1} ------------------')
    train_loader, valid_loader = prepare_loaders(train_df, fold=fold)
    model = NewsClassifier(n_classes=13).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = AdamW(model.parameters(), lr=2e-5)

    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=0,
        num_training_steps=len(train_loader) * EPOCHS
    )
    best_acc = 0

    for epoch in range(EPOCHS):
        print(f'Epoch {epoch + 1}/{EPOCHS}')
        print('-' * 30)

        train(model, criterion, optimizer, train_loader, lr_scheduler)
        val_acc = eval(model, criterion, valid_loader)

        if val_acc > best_acc:
            torch.save(model.state_dict(), f'phobert_fold{fold + 1}.pth')
            best_acc = val_acc
        print(f'Best Accuracy for Fold {fold + 1}: {best_acc:.4f}')
        print()
    print(f'Finished Fold {fold + 1} with Best Accuracy: {best_acc:.4f}')
    print('--------------------------------------')


total_end_time = time.time()

total_duration = total_end_time - total_start_time
print(f'Total training time: {total_duration:.2f} seconds')