Spaces:
Running
Running
File size: 14,880 Bytes
c2522bb 4bfc75e 18edec3 c2522bb 18edec3 4bfc75e c2522bb c548d40 c2522bb 4bfc75e c2522bb 18edec3 c2522bb 4bfc75e c2522bb 4bfc75e c2522bb 4bfc75e c2522bb 18edec3 c2522bb 4bfc75e c2522bb 18edec3 4bfc75e c2522bb 18edec3 c2522bb 18edec3 4bfc75e c2522bb 18edec3 0da399d 2e0df59 0da399d 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 18edec3 c2522bb 4bfc75e c2522bb 4bfc75e c2522bb 18edec3 4bfc75e c2522bb 18edec3 c2522bb 18edec3 c2522bb 4bfc75e 18edec3 c2522bb 18edec3 0da399d 18edec3 c2522bb 4bfc75e c2522bb 4bfc75e c2522bb 4bfc75e c2522bb 4bfc75e c2522bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
import os
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import plotly.express as px
import pickle
import random
from PIL import Image
from transformers import YolosFeatureExtractor, YolosForObjectDetection
from torchvision.transforms import ToTensor, ToPILImage
from annotated_text import annotated_text
st.set_page_config(layout="wide")
@st.cache_data(ttl=3600, show_spinner=False)
def load_model(feature_extractor_url, model_url):
feature_extractor_ = YolosFeatureExtractor.from_pretrained(feature_extractor_url)
model_ = YolosForObjectDetection.from_pretrained(model_url)
return feature_extractor_, model_
def rgb_to_hex(rgb):
"""Converts an RGB tuple to an HTML-style Hex string."""
hex_color = "#{:02x}{:02x}{:02x}".format(int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255))
return hex_color
## CODE TO CLEAN IMAGES
def fix_channels(t):
if len(t.shape) == 2:
return ToPILImage()(torch.stack([t for i in (0, 0, 0)]))
if t.shape[0] == 4:
return ToPILImage()(t[:3])
if t.shape[0] == 1:
return ToPILImage()(torch.stack([t[0] for i in (0, 0, 0)]))
return ToPILImage()(t)
## CODE FOR PLOTS WITH BOUNDING BOXES
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def idx_to_text(i):
if i in list(dict_cats_final.keys()):
return dict_cats_final[i.item()]
else:
return False
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def plot_results(pil_img, prob, boxes):
fig = plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
colors_used = []
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
p_max = p.max().detach().numpy()
if idx_to_text(cl) is False:
pass
else:
colors_used.append(rgb_to_hex(c))
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
ax.text(xmin, ymin, f"{idx_to_text(cl)}", fontsize=10,
bbox=dict(facecolor=c, alpha=0.8))
plt.axis('off')
plt.savefig("results_od.png",
bbox_inches ="tight")
plt.show()
st.image("results_od.png")
return colors_used
def return_probas(outputs, threshold):
probas = outputs.logits.softmax(-1)[0, :, :-1]
probas = probas[:][:,list(dict_cats_final.keys())]
keep = probas.max(-1).values > threshold
return probas, keep
def visualize_probas(probas, threshold, colors):
label_df = pd.DataFrame({"label":probas.max(-1).indices.detach().numpy(),
"proba":probas.max(-1).values.detach().numpy()})
cats_dict = dict(zip(np.arange(0,len(cats)),cats))
label_df["label"] = label_df["label"].map(cats_dict)
top_label_df = label_df.loc[label_df["proba"]>threshold].round(2)
top_label_df["colors"] = colors
top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)
#st.dataframe(top_label_df.drop(columns=["colors"]))
mode_func = lambda x: x.mode().iloc[0]
top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)
top_label_df_agg.columns = ["Item","Score","Colors"]
color_map = dict(zip(top_label_df_agg["Item"].to_list(),
top_label_df_agg["Colors"].to_list()))
fig = px.bar(top_label_df_agg, y='Item', x='Score',
color="Item", title="Probability scores")
st.plotly_chart(fig, use_container_width=True)
cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit',
'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar',
'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']
######################################################################################################################################
st.markdown("# Object Detection")
st.markdown("### What is Object Detection ?")
#st.markdown("""Object detection involves **identifying** and **locating objects** within an image or video frame through bounding boxes. """)
st.info("""Object Detection is a computer vision task in which the goal is to **detect** and **locate objects** of interest in an image or video.
The task involves identifying the position and boundaries of objects (or **bounding boxes**) in an image, and classifying the objects into different categories.""")
st.markdown("Here is an example of Object Detection for Traffic Analysis.")
#image_od = Image.open('images/od_2.png')
#st.image(image_od, width=600)
st.video(data='https://www.youtube.com/watch?v=PVCGDoTZHaI')
st.markdown(" ")
st.markdown("""Common applications of Object Detection include:
- **Autonomous Vehicles** :car: : Object detection is crucial for self-driving cars to track pedestrians, cyclists, other vehicles, and obstacles on the road.
- **Retail** π¬ : Implementing smart shelves and checkout systems that use object detection to track inventory and monitor stock levels.
- **Healthcare** π¨ββοΈ: Detecting and tracking anomalies in medical images, such as tumors or abnormalities, for diagnostic purposes or prevention.
- **Manufacturing** π: Quality control on production lines by detecting defects or irregularities in manufactured products. Ensuring workplace safety by monitoring the movement of workers and equipment.
- **Fashion and E-commerce** ποΈ : Improving virtual try-on experiences by accurately detecting and placing virtual clothing items on users.
""")
st.markdown(" ")
st.divider()
st.markdown("## Fashion Object Detection π")
# st.info("""This use case showcases the application of **Object detection** to detect clothing items/features on images. <br>
# The images used were gathered from Dior's""")
st.info("""In this use case, we are going to identify and locate different articles of clothings, as well as finer details such as a collar or pocket using an object detection AI model.
The images used were taken from **Dior's 2020 Fall Women Fashion Show**.""")
st.markdown(" ")
images_dior = [os.path.join("data/dior_show/images",url) for url in os.listdir("data/dior_show/images") if url != "results"]
columns_img = st.columns(4)
for img, col in zip(images_dior,columns_img):
with col:
st.image(img)
st.markdown(" ")
st.markdown("### About the model π")
st.markdown("""The object detection model was trained specifically to **detect clothing items** on images. <br>
It is able to detect <b>46</b> different types of clothing items.""", unsafe_allow_html=True)
colors = ["#8ef", "#faa", "#afa", "#fea", "#8ef","#afa"]*7 + ["#8ef", "#faa", "#afa", "#fea"]
cats_annotated = [(g,"","#afa") for g in cats]
annotated_text([cats_annotated])
# st.markdown("""**Here are the 'objects' the model is able to detect**: <br>
# 'shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt',
# 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch',
# 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel',
# 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet',
# 'ruffle', 'sequin', 'tassel'""", unsafe_allow_html=True)
st.markdown("Credits: https://huggingface.co/valentinafeve/yolos-fashionpedia")
st.markdown("")
st.markdown("")
############## SELECT AN IMAGE ###############
st.markdown("### Select an image πΌοΈ")
#st.markdown("""**Select an image that you wish to run the Object Detection model on.**""")
image_ = None
fashion_images_path = r"data/dior_show/images"
list_images = os.listdir(fashion_images_path)
image_name = st.selectbox("Select the image you wish to run the model on", list_images)
image_ = os.path.join(fashion_images_path, image_name)
st.image(image_, width=300)
# image_ = None
# select_image_box = st.radio(
# "**Select the image you wish to run the model on**",
# ["Choose an existing image", "Load your own image"],
# index=None,)# #label_visibility="collapsed")
# if select_image_box == "Choose an existing image":
# fashion_images_path = r"data/dior_show/images"
# list_images = os.listdir(fashion_images_path)
# image_ = st.selectbox("", list_images, label_visibility="collapsed")
# if image_ is not None:
# image_ = os.path.join(fashion_images_path,image_)
# st.markdown("You've selected the following image:")
# st.image(image_, width=300)
# elif select_image_box == "Load your own image":
# image_ = st.file_uploader("Load an image here",
# key="OD_dior", type=['jpg','jpeg','png'], label_visibility="collapsed")
# st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward.
# Choose this type of image if you want optimal results.""")
# st.warning("""**Note:** The model was trained to detect clothing items on a single person.
# If your image contains more than one person, the model won't detect the items of the other persons.""")
# if image_ is not None:
# st.image(Image.open(image_), width=300)
st.markdown(" ")
st.markdown(" ")
########## SELECT AN ELEMENT TO DETECT ##################
dict_cats = dict(zip(np.arange(len(cats)), cats))
# st.markdown("#### Choose the elements you want to detect π")
# # Select one or more elements to detect
# container = st.container()
# selected_options = None
# all = st.checkbox("Select all")
# if all:
# selected_options = container.multiselect("**Select one or more items**", cats, cats)
# else:
# selected_options = container.multiselect("**Select one or more items**", cats)
#cats = selected_options
selected_options = cats
dict_cats_final = {key:value for (key,value) in dict_cats.items() if value in selected_options}
# st.markdown(" ")
# st.markdown(" ")
############## SELECT A THRESHOLD ###############
st.markdown("### Define a threshold for predictions π")
st.markdown("""This section allows you to control how confident you want your model to be with its predictions. <br>
Objects that are given a lower score than the chosen threshold will be ignored in the final results.""", unsafe_allow_html=True)
st.markdown(" Below is an example of probability scores given by object detection models for each element detected.")
st.image("images/probability_od.png", caption="Example with bounding boxes and probability scores given by object detection models")
st.markdown(" ")
st.markdown("**Select a threshold** ")
# st.warning("""**Note**: The threshold helps you decide how confident you want your model to be with its predictions.
# Elements that are identified with a lower probability than the given threshold will be ignored in the final results.""")
threshold = st.slider('**Select a threshold**', min_value=0.5, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
# if threshold < 0.6:
# st.error("""**Warning**: Selecting a low threshold (below 0.6) could lead the model to make errors and detect too many objects.""")
st.write("You've selected a threshold at", threshold)
st.markdown(" ")
pickle_file_path = r"data/dior_show/results"
############# RUN MODEL ################
run_model = st.button("**Run the model**", type="primary")
if run_model:
if image_ != None and selected_options != None and threshold!= None:
with st.spinner('Wait for it...'):
## SELECT IMAGE
#st.write(image_)
image = Image.open(image_)
image = fix_channels(ToTensor()(image))
## LOAD OBJECT DETECTION MODEL
FEATURE_EXTRACTOR_PATH = "hustvl/yolos-small"
MODEL_PATH = "valentinafeve/yolos-fashionpedia"
# feature_extractor, model = load_model(FEATURE_EXTRACTOR_PATH, MODEL_PATH)
# # RUN MODEL ON IMAGE
# inputs = feature_extractor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# Save results
# pickle_file_path = r"data/dior_show/results"
# image_name = image_.split('\\')[1][:5]
# with open(os.path.join(pickle_file_path, f"{image_name}_results.pkl"), 'wb') as file:
# pickle.dump(outputs, file)
image_name = image_name[:5]
path_load_pickle = os.path.join(pickle_file_path, f"{image_name}_results.pkl")
with open(path_load_pickle, 'rb') as pickle_file:
outputs = pickle.load(pickle_file)
probas, keep = return_probas(outputs, threshold)
st.markdown("#### See the results βοΈ")
# PLOT BOUNDING BOX AND BARS/PROBA
col1, col2 = st.columns(2)
with col1:
#st.markdown("**Bounding box results**")
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
colors_used = plot_results(image, probas[keep], bboxes_scaled)
with col2:
#st.markdown("**Probability scores**")
if not any(keep.tolist()):
st.error("""No objects were detected on the image.
Decrease your threshold or choose differents items to detect.""")
else:
visualize_probas(probas, threshold, colors_used)
else:
st.error("You must select an **image**, **elements to detect** and a **threshold** to run the model !")
|