File size: 11,106 Bytes
c2522bb
 
 
 
 
 
 
 
 
 
 
 
 
7b7d942
c2522bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import re
import time
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import altair as alt
import plotly.express as px

from pysentimiento import create_analyzer
from utils import load_data_pickle

#st.set_page_config(layout="wide")

def clean_text(text):
    pattern_punct = r"[^\w\s.',:/]"
    pattern_date = r'\b\d{1,2}/\d{1,2}/\d{2,4}\b'

    text = text.lower()
    text = re.sub(pattern_date, '', text)
    text = re.sub(pattern_punct, '', text)
    text = text.replace("ggg","g")
    text = text.replace("  "," ")
    return text

@st.cache_data(ttl=3600, show_spinner=False)
def load_sa_model():
    return create_analyzer(task="sentiment", lang="en")




st.markdown("# Sentiment Analysis")

st.markdown("### What is Sentiment Analysis ?")

st.info("""
    Sentiment analysis is a **Natural Language Processing** (NLP) task that involves determining the sentiment or emotion expressed in a piece of text. 
    It has a wide range of use cases across various industries, as it helps organizations gain insights into the opinions, emotions, and attitudes expressed in text data.""")

st.markdown("Here is an example of Sentiment analysis used to analyze **Customer Satisfaction** for perfums.")

_, col, _ = st.columns([0.1,0.8,0.1])
with col:
    st.image("images/sentiment_analysis.png") #, width=800)

st.markdown(" ")

st.markdown("""
Common applications of Natural Language Processing include:
- **Customer Feedback and Reviews** πŸ’―: Assessing reviews on products or services to understand customer satisfaction and identify areas for improvement.
- **Market Research** πŸ”: Analyzing survey responses or online forums to gauge public opinion on products, services, or emerging trends.
- **Financial Market Analysis** πŸ“‰: Monitoring financial news, reports, and social media to gauge investor sentiment and predict market trends.
- **Government and Public Policy** πŸ“£: Analyzing public opinion on government policies, initiatives, and political decisions to gauge public sentiment and inform decision-making.        
""")

st.divider()

#sa_pages = ["Starbucks Customer Reviews (Text)", "Tiktok's US Congressional Hearing (Audio)"]
#st.markdown("### Select a use case ")
#use_case = st.selectbox("", sa_pages, label_visibility="collapsed")


st.markdown("### Customer Reviews πŸ“")
st.info("""In this use case, **sentiment analysis** is used to predict the **polarity** (negative, neutral, positive) of customer reviews. 
           You can try the application by using the provided starbucks customer reviews, or by writing your own.""") 
st.markdown(" ")

_, col, _ = st.columns([0.25,0.5,0.25])
with col:
    st.image("images/reviews.jpg")

st.markdown(" ")


# Load data 
path_sa = "data/sa_data"
reviews_df = load_data_pickle(path_sa,"reviews_raw.pkl")
reviews_df.reset_index(drop=True, inplace=True)
reviews_df["Date"] = reviews_df["Date"].dt.date
reviews_df["Year"] = reviews_df["Year"].astype(int)



st.markdown("#### Predict polarity πŸ€”")
tab1_, tab2_ = st.tabs(["Starbucks reviews", "Write a review"])

with tab1_:
    # FILTER DATA
    st.markdown(" ")

    col1, col2 = st.columns([0.2, 0.8], gap="medium")

    with col1:
        st.markdown("""<b>Filter reviews: </b> <br>
                    You can filter the dataset by Date, State or Rating""", unsafe_allow_html=True)
        
        select_image_box = st.radio("",
        ["Filter by Date (Year)", "Filter by State", "Filter by Rating", "No filters"],
        index=3, label_visibility="collapsed")

        if select_image_box == "Filter by Date (Year)":
            selected_date = st.multiselect("Date (Year)", reviews_df["Year"].unique(), default=reviews_df["Year"].unique()[0])
            reviews_df = reviews_df.loc[reviews_df["Year"].isin(selected_date)]

        if select_image_box == "Filter by State":
            selected_state = st.multiselect("State", reviews_df["State"].unique(), default=reviews_df["State"].unique()[0])
            reviews_df = reviews_df.loc[reviews_df["State"].isin(selected_state)]

        if select_image_box == "Filter by Rating":
            selected_rating = st.multiselect("Rating", sorted(list(reviews_df["Rating"].dropna().unique())), 
                                             default = sorted(list(reviews_df["Rating"].dropna().unique()))[0])
            reviews_df = reviews_df.loc[reviews_df["Rating"].isin(selected_rating)]

        if select_image_box == "No filters":
            pass

        #st.slider()
        run_model1 = st.button("**Run the model**", type="primary", key="tab1")
        st.info("The model has already been trained in this use case.")

    with col2:
    # VIEW DATA
        st.markdown("""<b>View the reviews:</b> <br>
                    The dataset contains the location (State), date, rating, text and images (if provided) for each review.""", 
                    unsafe_allow_html=True)
        
        st.data_editor(
            reviews_df.drop(columns=["Year"]), 
            column_config={"Image 1": st.column_config.ImageColumn("Image 1"), 
                            "Image 2": st.column_config.ImageColumn("Image 2")},
            hide_index=True)
        

######### SHOW RESULTS ########
    if run_model1:
        with st.spinner('Wait for it...'):
            df_results = load_data_pickle(path_sa,"reviews_results.pkl")
            df_results.reset_index(drop=True, inplace=True)

            index_row = np.array(reviews_df.index)
            df_results = df_results.iloc[index_row].reset_index(drop=True)
            df_results["Review"] = reviews_df["Review"]
            st.markdown("  ")

            st.markdown("#### See the results β˜‘οΈ")
            tab1, tab2, tab3 = st.tabs(["All results", "Results per state", "Results per year"])        
            
            with tab1: # Overall results (tab_1)
                # get results df
                df_results_tab1 = df_results[["ID","Review","Rating","Negative","Neutral","Positive","Result"]]

                # warning message
                df_warning = df_results_tab1["Result"].value_counts().to_frame().reset_index()
                df_warning["Percentage"] = (100*df_warning["count"]/df_warning["count"].sum()).round(2)
                
                perct_negative = df_warning.loc[df_warning["Result"]=="Negative","Percentage"].to_numpy()[0]
                if perct_negative > 50:
                    st.error(f"**Negative reviews alert** ⚠️: The proportion of negative reviews is {perct_negative}% !")

                # show dataframe results
                st.data_editor(
                    df_results_tab1, #.loc[df_results_tab1["Customer ID"].isin(filter_customers)],
                    column_config={
                        "Negative": st.column_config.ProgressColumn(
                            "Negative πŸ‘Ž",
                            help="Negative score of the review",
                            format="%d%%",
                            min_value=0,
                            max_value=100),
                        "Neutral": st.column_config.ProgressColumn(
                            "Neutral βœ‹",
                            help="Neutral score of the review",
                            format="%d%%",
                            min_value=0,
                            max_value=100),
                        "Positive": st.column_config.ProgressColumn(
                            "Positive πŸ‘",
                            help="Positive score of the review",
                            format="%d%%",
                            min_value=0,
                            max_value=100)},
                        hide_index=True,
                )

            with tab2: # Results by state (tab_1)
                avg_state = df_results[["State","Negative","Neutral","Positive"]].groupby(["State"]).mean().round()
                avg_state = avg_state.reset_index().melt(id_vars="State", var_name="Sentiment", value_name="Score (%)")

                chart_state = alt.Chart(avg_state, title="Review polarity per state").mark_bar().encode(
                    x=alt.X('Sentiment', axis=alt.Axis(title=None, labels=False, ticks=False)),
                    y=alt.Y('Score (%)', axis=alt.Axis(grid=False)),
                    color='Sentiment',
                    column=alt.Column('State', header=alt.Header(title=None, labelOrient='bottom'))
                ).configure_view(
                    stroke='transparent'
                ).interactive()

                st.markdown(" ")
                st.altair_chart(chart_state)


            with tab3: # Results by year (tab_1)
                avg_year = df_results[["Year","Negative","Neutral","Positive"]]
                #avg_year["Year"] = avg_year["Year"].astype(str)
                avg_year = avg_year.groupby(["Year"]).mean().round()
                avg_year = avg_year.reset_index().melt(id_vars="Year", var_name="Sentiment", value_name="Score (%)")

                chart_year = alt.Chart(avg_year, title="Evolution of review polarity").mark_area(opacity=0.5).encode(
                    x='Year',
                    y='Score (%)',
                    color='Sentiment',
                ).interactive()

                st.markdown(" ")
                st.altair_chart(chart_year, use_container_width=True)
        
        # else:
        #     st.warning("You must select at least one review to run the model.")


#### WRITE YOUR OWN REVIEW #####""
with tab2_:
    st.markdown("**Write your own review**")

    txt_review = st.text_area(
        "Write your review",
        "I recently visited a local Starbucks, and unfortunately, my experience was far from satisfactory. "
        "From the moment I stepped in, the atmosphere felt chaotic and disorganized. "
        "The staff appeared overwhelmed, leading to a significant delay in receiving my order. "
        "The quality of my drink further added to my disappointment. " 
        "The coffee tasted burnt, as if it had been sitting on the burner for far too long.",
        label_visibility="collapsed"
        )
    
    run_model2 = st.button("**Run the model**", type="primary", key="tab2")
        
    if run_model2:
        with st.spinner('Wait for it...'):
            #sentiment_analyzer = create_analyzer(task="sentiment", lang="en")
            # Load model with cache
            sentiment_analyzer = load_sa_model()
            q = sentiment_analyzer.predict(txt_review)

            df_review_user = pd.DataFrame({"Polarity":["Positive","Neutral","Negative"], 
                        "Score":[q.probas['POS'], q.probas['NEU'], q.probas['NEG']]})
            
            st.markdown(" ")
            st.info(f"""Your review was **{int(q.probas['POS']*100)}%** positive, **{int(q.probas['NEU']*100)}%** neutral 
                    and **{int(q.probas['NEG']*100)}%** negative.""")

            fig = px.bar(df_review_user, x='Score', y='Polarity', color="Polarity", title='Sentiment analysis results', orientation="h")
            st.plotly_chart(fig, use_container_width=True)