File size: 33,967 Bytes
9eae06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
from copy import deepcopy
from pathlib import Path

import torch
import torch.nn as nn

from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
                                    Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
                                    Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
                                    RTDETRDecoder, Segment)
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.yolo.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.yolo.utils.plotting import feature_visualization
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights,
                                                intersect_dicts, make_divisible, model_info, scale_img, time_sync)

try:
    import thop
except ImportError:
    thop = None


class BaseModel(nn.Module):
    """
    The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
    """

    def forward(self, x, *args, **kwargs):
        """
        Forward pass of the model on a single scale.
        Wrapper for `_forward_once` method.

        Args:
            x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.

        Returns:
            (torch.Tensor): The output of the network.
        """
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

    def predict(self, x, profile=False, visualize=False, augment=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            augment (bool): Augment image during prediction, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        if augment:
            return self._predict_augment(x)
        return self._predict_once(x, profile, visualize)

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(
            f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
        )
        return self._predict_once(x)

    def _profile_one_layer(self, m, x, dt):
        """
        Profile the computation time and FLOPs of a single layer of the model on a given input.
        Appends the results to the provided list.

        Args:
            m (nn.Module): The layer to be profiled.
            x (torch.Tensor): The input data to the layer.
            dt (list): A list to store the computation time of the layer.

        Returns:
            None
        """
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=[x.clone() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.clone() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self, verbose=True):
        """
        Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
        computation efficiency.

        Returns:
            (nn.Module): The fused model is returned.
        """
        if not self.is_fused():
            for m in self.model.modules():
                if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
                    if isinstance(m, Conv2):
                        m.fuse_convs()
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
                    m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, RepConv):
                    m.fuse_convs()
                    m.forward = m.forward_fuse  # update forward
            self.info(verbose=verbose)

        return self

    def is_fused(self, thresh=10):
        """
        Check if the model has less than a certain threshold of BatchNorm layers.

        Args:
            thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

        Returns:
            (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
        """
        bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
        return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

    def info(self, detailed=False, verbose=True, imgsz=640):
        """
        Prints model information

        Args:
            verbose (bool): if True, prints out the model information. Defaults to False
            imgsz (int): the size of the image that the model will be trained on. Defaults to 640
        """
        return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)

    def _apply(self, fn):
        """
        `_apply()` is a function that applies a function to all the tensors in the model that are not
        parameters or registered buffers

        Args:
            fn: the function to apply to the model

        Returns:
            A model that is a Detect() object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self

    def load(self, weights, verbose=True):
        """Load the weights into the model.

        Args:
            weights (dict) or (torch.nn.Module): The pre-trained weights to be loaded.
            verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
        """
        model = weights['model'] if isinstance(weights, dict) else weights  # torchvision models are not dicts
        csd = model.float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load
        if verbose:
            LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')

    def loss(self, batch, preds=None):
        """
        Compute loss

        Args:
            batch (dict): Batch to compute loss on
            preds (torch.Tensor | List[torch.Tensor]): Predictions.
        """
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()
        return self.criterion(self.predict(batch['img']) if preds is None else preds, batch)

    def init_criterion(self):
        raise NotImplementedError('compute_loss() needs to be implemented by task heads')


class DetectionModel(BaseModel):
    """YOLOv8 detection model."""

    def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True):  # model, input channels, number of classes
        super().__init__()
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.inplace = self.yaml.get('inplace', True)

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment, Pose)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            self.stride = m.stride
            m.bias_init()  # only run once

        # Init weights, biases
        initialize_weights(self)
        if verbose:
            self.info()
            LOGGER.info('')

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference and train outputs."""
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = super().predict(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, -1), None  # augmented inference, train

    @staticmethod
    def _descale_pred(p, flips, scale, img_size, dim=1):
        """De-scale predictions following augmented inference (inverse operation)."""
        p[:, :4] /= scale  # de-scale
        x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
        if flips == 2:
            y = img_size[0] - y  # de-flip ud
        elif flips == 3:
            x = img_size[1] - x  # de-flip lr
        return torch.cat((x, y, wh, cls), dim)

    def _clip_augmented(self, y):
        """Clip YOLOv5 augmented inference tails."""
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][..., :-i]  # large
        i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][..., i:]  # small
        return y

    def init_criterion(self):
        return v8DetectionLoss(self)


class SegmentationModel(DetectionModel):
    """YOLOv8 segmentation model."""

    def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 segmentation model with given config and parameters."""
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        return v8SegmentationLoss(self)

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(
            f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
        )
        return self._predict_once(x)


class PoseModel(DetectionModel):
    """YOLOv8 pose model."""

    def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
        """Initialize YOLOv8 Pose model."""
        if not isinstance(cfg, dict):
            cfg = yaml_model_load(cfg)  # load model YAML
        if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
            LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
            cfg['kpt_shape'] = data_kpt_shape
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        return v8PoseLoss(self)

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(
            f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
        )
        return self._predict_once(x)


class ClassificationModel(BaseModel):
    """YOLOv8 classification model."""

    def __init__(self,
                 cfg=None,
                 model=None,
                 ch=3,
                 nc=None,
                 cutoff=10,
                 verbose=True):  # yaml, model, channels, number of classes, cutoff index, verbose flag
        super().__init__()
        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)

    def _from_detection_model(self, model, nc=1000, cutoff=10):
        """Create a YOLOv5 classification model from a YOLOv5 detection model."""
        from ultralytics.nn.autobackend import AutoBackend
        if isinstance(model, AutoBackend):
            model = model.model  # unwrap DetectMultiBackend
        model.model = model.model[:cutoff]  # backbone
        m = model.model[-1]  # last layer
        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
        c = Classify(ch, nc)  # Classify()
        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
        model.model[-1] = c  # replace
        self.model = model.model
        self.stride = model.stride
        self.save = []
        self.nc = nc

    def _from_yaml(self, cfg, ch, nc, verbose):
        """Set YOLOv8 model configurations and define the model architecture."""
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        elif not nc and not self.yaml.get('nc', None):
            raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.stride = torch.Tensor([1])  # no stride constraints
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.info()

    @staticmethod
    def reshape_outputs(model, nc):
        """Update a TorchVision classification model to class count 'n' if required."""
        name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
        if isinstance(m, Classify):  # YOLO Classify() head
            if m.linear.out_features != nc:
                m.linear = nn.Linear(m.linear.in_features, nc)
        elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
            if m.out_features != nc:
                setattr(model, name, nn.Linear(m.in_features, nc))
        elif isinstance(m, nn.Sequential):
            types = [type(x) for x in m]
            if nn.Linear in types:
                i = types.index(nn.Linear)  # nn.Linear index
                if m[i].out_features != nc:
                    m[i] = nn.Linear(m[i].in_features, nc)
            elif nn.Conv2d in types:
                i = types.index(nn.Conv2d)  # nn.Conv2d index
                if m[i].out_channels != nc:
                    m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)

    def init_criterion(self):
        """Compute the classification loss between predictions and true labels."""
        return v8ClassificationLoss()


class RTDETRDetectionModel(DetectionModel):

    def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Compute the classification loss between predictions and true labels."""
        from ultralytics.vit.utils.loss import RTDETRDetectionLoss

        return RTDETRDetectionLoss(num_classes=self.nc, use_vfl=True)

    def loss(self, batch, preds=None):
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()

        img = batch['img']
        # NOTE: preprocess gt_bbox and gt_labels to list.
        bs = len(img)
        batch_idx = batch['batch_idx']
        gt_bbox, gt_class = [], []
        for i in range(bs):
            gt_bbox.append(batch['bboxes'][batch_idx == i].to(img.device))
            gt_class.append(batch['cls'][batch_idx == i].to(device=img.device, dtype=torch.long))
        targets = {'cls': gt_class, 'bboxes': gt_bbox}

        preds = self.predict(img, batch=targets) if preds is None else preds
        dec_out_bboxes, dec_out_logits, enc_topk_bboxes, enc_topk_logits, dn_meta = preds
        # NOTE: `dn_meta` means it's eval mode, loss calculation for eval mode is not supported.
        if dn_meta is None:
            return 0, torch.zeros(3, device=dec_out_bboxes.device)
        dn_out_bboxes, dec_out_bboxes = torch.split(dec_out_bboxes, dn_meta['dn_num_split'], dim=2)
        dn_out_logits, dec_out_logits = torch.split(dec_out_logits, dn_meta['dn_num_split'], dim=2)

        out_bboxes = torch.cat([enc_topk_bboxes.unsqueeze(0), dec_out_bboxes])
        out_logits = torch.cat([enc_topk_logits.unsqueeze(0), dec_out_logits])

        loss = self.criterion((out_bboxes, out_logits),
                              targets,
                              dn_out_bboxes=dn_out_bboxes,
                              dn_out_logits=dn_out_logits,
                              dn_meta=dn_meta)
        return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']])

    def predict(self, x, profile=False, visualize=False, batch=None):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False
            batch (dict): A dict including gt boxes and labels from dataloader.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x


class Ensemble(nn.ModuleList):
    """Ensemble of models."""

    def __init__(self):
        """Initialize an ensemble of models."""
        super().__init__()

    def forward(self, x, augment=False, profile=False, visualize=False):
        """Function generates the YOLOv5 network's final layer."""
        y = [module(x, augment, profile, visualize)[0] for module in self]
        # y = torch.stack(y).max(0)[0]  # max ensemble
        # y = torch.stack(y).mean(0)  # mean ensemble
        y = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)
        return y, None  # inference, train output


# Functions ------------------------------------------------------------------------------------------------------------


def torch_safe_load(weight):
    """
    This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
    it catches the error, logs a warning message, and attempts to install the missing module via the
    check_requirements() function. After installation, the function again attempts to load the model using torch.load().

    Args:
        weight (str): The file path of the PyTorch model.

    Returns:
        (dict): The loaded PyTorch model.
    """
    from ultralytics.yolo.utils.downloads import attempt_download_asset

    check_suffix(file=weight, suffix='.pt')
    file = attempt_download_asset(weight)  # search online if missing locally
    try:
        return torch.load(file, map_location='cpu'), file  # load
    except ModuleNotFoundError as e:  # e.name is missing module name
        if e.name == 'models':
            raise TypeError(
                emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
                       f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
                       f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
        LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
                       f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
        check_requirements(e.name)  # install missing module

        return torch.load(file, map_location='cpu'), file  # load


def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
    """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""

    ensemble = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        ckpt, w = torch_safe_load(w)  # load ckpt
        args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None  # combined args
        model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

        # Model compatibility updates
        model.args = args  # attach args to model
        model.pt_path = w  # attach *.pt file path to model
        model.task = guess_model_task(model)
        if not hasattr(model, 'stride'):
            model.stride = torch.tensor([32.])

        # Append
        ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval())  # model in eval mode

    # Module compatibility updates
    for m in ensemble.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace  # torch 1.7.0 compatibility
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model
    if len(ensemble) == 1:
        return ensemble[-1]

    # Return ensemble
    LOGGER.info(f'Ensemble created with {weights}\n')
    for k in 'names', 'nc', 'yaml':
        setattr(ensemble, k, getattr(ensemble[0], k))
    ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
    assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
    return ensemble


def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
    """Loads a single model weights."""
    ckpt, weight = torch_safe_load(weight)  # load ckpt
    args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))}  # combine model and default args, preferring model args
    model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

    # Model compatibility updates
    model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
    model.pt_path = weight  # attach *.pt file path to model
    model.task = guess_model_task(model)
    if not hasattr(model, 'stride'):
        model.stride = torch.tensor([32.])

    model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()  # model in eval mode

    # Module compatibility updates
    for m in model.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace  # torch 1.7.0 compatibility
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model and ckpt
    return model, ckpt


def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)
    # Parse a YOLO model.yaml dictionary into a PyTorch model
    import ast

    # Args
    max_channels = float('inf')
    nc, act, scales = (d.get(x) for x in ('nc', 'act', 'scales'))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
    if scales:
        scale = d.get('scale')
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    args[j] = locals()[a] if a in locals() else ast.literal_eval(a)

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                 BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3):
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

            args = [c1, c2, *args[1:]]
            if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m in (HGStem, HGBlock):
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1

        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in (Detect, Segment, Pose, RTDETRDecoder):
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


def yaml_model_load(path):
    """Load a YOLOv8 model from a YAML file."""
    import re

    path = Path(path)
    if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
        new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
        LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
        path = path.with_stem(new_stem)

    unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path))  # i.e. yolov8x.yaml -> yolov8.yaml
    yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
    d = yaml_load(yaml_file)  # model dict
    d['scale'] = guess_model_scale(path)
    d['yaml_file'] = str(path)
    return d


def guess_model_scale(model_path):
    """
    Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale.
    The function uses regular expression matching to find the pattern of the model scale in the YAML file name,
    which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.

    Args:
        model_path (str) or (Path): The path to the YOLO model's YAML file.

    Returns:
        (str): The size character of the model's scale, which can be n, s, m, l, or x.
    """
    with contextlib.suppress(AttributeError):
        import re
        return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1)  # n, s, m, l, or x
    return ''


def guess_model_task(model):
    """
    Guess the task of a PyTorch model from its architecture or configuration.

    Args:
        model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.

    Returns:
        (str): Task of the model ('detect', 'segment', 'classify', 'pose').

    Raises:
        SyntaxError: If the task of the model could not be determined.
    """

    def cfg2task(cfg):
        """Guess from YAML dictionary."""
        m = cfg['head'][-1][-2].lower()  # output module name
        if m in ('classify', 'classifier', 'cls', 'fc'):
            return 'classify'
        if m == 'detect':
            return 'detect'
        if m == 'segment':
            return 'segment'
        if m == 'pose':
            return 'pose'

    # Guess from model cfg
    if isinstance(model, dict):
        with contextlib.suppress(Exception):
            return cfg2task(model)

    # Guess from PyTorch model
    if isinstance(model, nn.Module):  # PyTorch model
        for x in 'model.args', 'model.model.args', 'model.model.model.args':
            with contextlib.suppress(Exception):
                return eval(x)['task']
        for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
            with contextlib.suppress(Exception):
                return cfg2task(eval(x))

        for m in model.modules():
            if isinstance(m, Detect):
                return 'detect'
            elif isinstance(m, Segment):
                return 'segment'
            elif isinstance(m, Classify):
                return 'classify'
            elif isinstance(m, Pose):
                return 'pose'

    # Guess from model filename
    if isinstance(model, (str, Path)):
        model = Path(model)
        if '-seg' in model.stem or 'segment' in model.parts:
            return 'segment'
        elif '-cls' in model.stem or 'classify' in model.parts:
            return 'classify'
        elif '-pose' in model.stem or 'pose' in model.parts:
            return 'pose'
        elif 'detect' in model.parts:
            return 'detect'

    # Unable to determine task from model
    LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
                   "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
    return 'detect'  # assume detect