File size: 14,672 Bytes
7bffaaf
 
 
 
 
 
0a10cf1
7bffaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a10cf1
 
 
 
 
 
 
 
7bffaaf
 
 
 
 
0a10cf1
7bffaaf
 
 
 
0a10cf1
7bffaaf
 
 
 
0a10cf1
 
7bffaaf
 
 
 
 
 
 
 
 
 
0a10cf1
7bffaaf
 
0a10cf1
7bffaaf
 
0a10cf1
7bffaaf
 
 
 
 
 
 
0a10cf1
 
7bffaaf
 
 
 
 
 
 
 
 
0a10cf1
 
 
7bffaaf
 
0a10cf1
 
 
 
 
7bffaaf
 
 
 
 
0a10cf1
7bffaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a10cf1
7bffaaf
 
0a10cf1
7bffaaf
0a10cf1
7bffaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a10cf1
7bffaaf
0a10cf1
7bffaaf
 
 
 
 
 
 
 
0a10cf1
7bffaaf
 
 
0a10cf1
7bffaaf
 
 
 
 
 
 
0a10cf1
7bffaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a10cf1
7bffaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import json
import random
import sys

import numpy as np
import pandas as pd
import streamlit as st
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

title = "Model Exploration"
description = "Comparison of hate speech detection models"
date = "2022-01-26"
thumbnail = "images/robot.png"

__HATE_DETECTION = """
Once the data has been collected using the definitions identified for the
task, you can start training your model. At training, the model takes in
the data with labels and learns the associated context in the input data
for each label. Depending on the task design, the labels may be binary like
'hateful' and 'non-hateful' or multiclass like 'neutral', 'offensive', and
'attack'.

When presented with a new input string, the model then predicts the
likelihood that the input is classified as each of the available labels and
returns the label with the highest likelihood as well as how confident the
model is in its selection using a score from 0 to 1.

Neural models such as transformers are frequently trained as general
language models and then fine-tuned on specific classification tasks.
These models can vary in their architecture and the optimization
algorithms, sometimes resulting in very different output for the same
input text.

The models used below include:
- [RoBERTa trained on FRENK dataset](https://huggingface.co/classla/roberta-base-frenk-hate)
- [RoBERTa trained on Twitter Hate Speech](https://huggingface.co/cardiffnlp/twitter-roberta-base-hate)
- [DeHateBERT model (trained on Twitter and StormFront)](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-english)
- [RoBERTa trained on 11 English hate speech datasets](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r1-target)
- [RoBERTa trained on 11 English hate speech datasets and Round 1 of the Dynamically Generated Hate Speech Dataset](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r2-target)
- [RoBERTa trained on 11 English hate speech datasets and Rounds 1 and 2 of the Dynamically Generated Hate Speech Dataset](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r3-target)
- [RoBERTa trained on 11 English hate speech datasets and Rounds 1, 2, and 3 of the Dynamically Generated Hate Speech Dataset](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target)
"""

__HATECHECK = """
[Röttinger et al. (2021)](https://aclanthology.org/2021.acl-long.4.pdf) 
developed a list of 3,901 test cases for hate speech detection models called 
HateCheck. HateCheck provides a number of templates long with placeholders for 
identity categories and hateful terms along with labels indicating whether a 
model should or should not categorize the instance as hate speech. For each 
case, they created several examples with different
identity attributes to test models' abilities to detect hate speech towards
a range of groups of people. Additionally, they used more difficult
linguistic contexts such as adding negation or more nuanced words to try to fool the
model. See some of there examples using the button or try to make
your own examples to test the models in the tools below.

*** Warning: these examples may include hateful and violent content as
well as slurs and other offensive languages ***
"""

__RANKING = """
When models process a given input, they calculate the probability of
that input being labeled with each of the possible labels (in binary
cases for example, either 'hateful' or 'not hateful'). The label with
the highest probably is returned. If we test multiple input sentences
for a given model, we can see which input sentences have the
highest probabilities, indicating which examples the model is most
confident in classifying.

Try comparing different input sentences for a given model
using the tool below.
"""

__COMPARISON = """
Depending on their training data and parameters, models can return very
different outputs for the same input. Knowing how models differ in
their behavior can help with choosing an appropriate model for your
given use case.

Additionally, models trained on one kind of data can perform very 
differently when tested on novel data. To show the models' performance
in a variety of settings, we also show the results of each model on 
four datasets: the entirety of the [HateCheck Dataset](https://github.com/paul-rottger/hatecheck-data), 
the [Dynamically Generated Hate Speech Dataset](https://github.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset), 
the [Hateful Memes Dataset](https://huggingface.co/datasets/limjiayi/hateful_memes_expanded) 
(without the images), and a 2000-instance subsection of the 
[Open Subtitles](https://opus.nlpl.eu/OpenSubtitles-v2018.php) 
(English) Dataset. While the first three are hate speech datasets and have 
labels for whether or not each instance is hateful, the Open Subtitles dataset
contains movie subtitles and is not labeled for instances of hate.

Try comparing two different models' output for the same comparison
sentence using the tool below.
"""

__MODELS = [
    "classla/roberta-base-frenk-hate",
    "cardiffnlp/twitter-roberta-base-hate",
    "Hate-speech-CNERG/dehatebert-mono-english",
    "facebook/roberta-hate-speech-dynabench-r1-target",
    "facebook/roberta-hate-speech-dynabench-r2-target",
    "facebook/roberta-hate-speech-dynabench-r3-target",
    "facebook/roberta-hate-speech-dynabench-r4-target",
]

autopop_ranking = [
    [
        "I don't hate black people.",
        "Black people should die.",
        "My friend likes pancakes.",
    ],
    [
        "Those dirty redskins are all drunks.",
        "I can't stand Chinese food. It's too spicy.",
        "I lived near many Chinese people and I hated every single one of them.",
    ],
    [
        "Stop saying that Mexicans don't belong in our country!",
        "We walked along the dyke down the road.",
        "Ah shit, I fucked up.",
    ],
]

# Creates the forms for receiving multiple inputs to compare for a single
# model or one input to compare for two models
def run_article():
    st.markdown("# Making a Hate Speech Detection Model")
    with st.expander("Hate Speech Detection Models", expanded=False):
        st.markdown(__HATE_DETECTION)
    hc_path = "posts/resources/"
    hc_pholders = json.load(
        open(hc_path + "template_placeholders.json", encoding="utf-8")
    )
    hc_templates = json.load(
        open(hc_path + "hatecheck_category_templates.json", encoding="utf-8")
    )
    hc_info = json.load(
        open(hc_path + "hatecheck_category_info.json", encoding="utf-8")
    )
    hc_cats = [""] + list(hc_info.keys())

    st.markdown("## Testing Models' Behavior")
    with st.expander("HateCheck Examples", expanded=False):
        st.markdown(__HATECHECK)
        category = st.selectbox(
            "Select a category of examples from HateCheck", hc_cats, key="hc_cat_select"
        )
        if category:
            with st.form(key="hate_check"):
                hc_cat = hc_info[category]
                templates = []
                names = []
                for hc_temp in hc_cat:
                    templates.append(hc_temp)
                    names.append(hc_cat[hc_temp]["name"])
                selected_names = st.multiselect(
                    "Select one or more HateCheck templates to generate examples for",
                    names,
                    key="hc_temp_multiselect",
                )
                num_exs = st.number_input(
                    "Select a number of examples to generate for each selected template",
                    min_value=1,
                    max_value=5,
                    value=3,
                )
                if st.form_submit_button(label="Generate Examples"):
                    for name in selected_names:
                        index = names.index(name)
                        template = templates[index]
                        examples = generate_hc_ex(
                            hc_templates[template], hc_pholders, num_exs
                        )
                        st.header(name)
                        st.subheader("Label: " + hc_cat[template]["value"])
                        st.caption(hc_cat[template]["desc"])
                        for num in range(num_exs):
                            ex = examples[num]
                            st.write("Example #" + str(num + 1) + ": " + ex)

    st.markdown("## Model Output Ranking")
    with st.expander("Model Output Ranking Tool", expanded=False):
        st.markdown(__RANKING)
        with st.form(key="ranking"):
            model_name = st.selectbox(
                "Select a model to test",
                __MODELS,
            )
            # the placeholder key functionality was added in v1.2 of streamlit
            # and versions on Spaces currently goes up to v1.0
            input_1 = st.text_input(
                "Input 1",
                help="Try a phrase like 'We shouldn't let [IDENTITY] suffer.'",
                # placeholder="We shouldn't let [IDENTITY] suffer."
            )
            input_2 = st.text_input(
                "Input 2",
                help="Try a phrase like 'I'd rather die than date [IDENTITY].'",
                # placeholder="I'd rather die than date [IDENTITY]."
            )
            input_3 = st.text_input(
                "Input 3",
                help="Try a phrase like 'Good morning'",
                # placeholder="Good morning."
            )
            autopop = st.checkbox(
                "Choose examples for me",
                key="rank_autopop_ckbx",
                help="Check this box to run the model with 3 preselected sentences.",
            )
            if st.form_submit_button(label="Rank inputs"):
                if autopop:
                    rank_inputs = random.choice(autopop_ranking)
                else:
                    rank_inputs = [input_1, input_2, input_3]
                sys.stderr.write("\n" + str(rank_inputs) + "\n")
                results = run_ranked(model_name, rank_inputs)
                st.dataframe(results)

    st.markdown("## Model Comparison")
    with st.expander("Model Comparison Tool", expanded=False):
        st.markdown(__COMPARISON)
        with st.form(key="comparison"):
            model_name_1 = st.selectbox(
                "Select a model to compare",
                __MODELS,
                key="compare_model_1",
            )
            model_name_2 = st.selectbox(
                "Select another model to compare",
                __MODELS,
                key="compare_model_2",
            )
            autopop = st.checkbox(
                "Choose an example for me",
                key="comp_autopop_ckbx",
                help="Check this box to compare the models with a preselected sentence.",
            )
            input_text = st.text_input("Comparison input")
            if st.form_submit_button(label="Compare models"):
                if autopop:
                    input_text = random.choice(random.choice(autopop_ranking))
                results = run_compare(model_name_1, model_name_2, input_text)
                st.write("### Showing results for: " + input_text)
                st.dataframe(results)
                outside_ds = ["hatecheck", "dynabench", "hatefulmemes", "opensubtitles"]
                name_1_short = model_name_1.split("/")[1]
                name_2_short = model_name_2.split("/")[1]
                for calib_ds in outside_ds:
                    ds_loc = "posts/resources/charts/" + calib_ds + "/"
                    images, captions = [], []
                    for model in [name_1_short, name_2_short]:
                        images.append(ds_loc + model + "_" + calib_ds + ".png")
                        captions.append("Counts of dataset instances by hate score.")
                    st.write("#### Model performance comparison on " + calib_ds)
                    st.image(images, captions)


#                if model_name_1 == "Hate-speech-CNERG/dehatebert-mono-english":
#                    st.image("posts/resources/dehatebert-mono-english_calibration.png")
#                elif model_name_1 == "cardiffnlp/twitter-roberta-base-hate":
#                    st.image("posts/resources/twitter-roberta-base-hate_calibration.png")
#                st.write("Calibration of Model 2")
#                if model_name_2 == "Hate-speech-CNERG/dehatebert-mono-english":
#                    st.image("posts/resources/dehatebert-mono-english_calibration.png")
#                elif model_name_2 == "cardiffnlp/twitter-roberta-base-hate":
#                    st.image("posts/resources/twitter-roberta-base-hate_calibration.png")


# Takes in a Hate Check template and placeholders and generates the given
# number of random examples from the template, inserting a random instance of
# an identity category if there is a placeholder in the template
def generate_hc_ex(template, placeholders, gen_num):
    sampled = random.sample(template, gen_num)
    ph_cats = list(placeholders.keys())
    for index in range(len(sampled)):
        sample = sampled[index]
        for ph_cat in ph_cats:
            if ph_cat in sample:
                insert = random.choice(placeholders[ph_cat])
                sampled[index] = sample.replace(ph_cat, insert).capitalize()
    return sampled


# Runs the received input strings through the given model and returns the
# all scores for all possible labels as a DataFrame
def run_ranked(model, input_list):
    classifier = pipeline("text-classification", model=model, return_all_scores=True)
    output = {}
    results = classifier(input_list)
    for result in results:
        for index in range(len(result)):
            label = result[index]["label"]
            score = result[index]["score"]
            if label in output:
                output[label].append(score)
            else:
                new_out = [score]
                output[label] = new_out
    return pd.DataFrame(output, index=input_list)


# Takes in two model names and returns the output of both models for that
# given input string
def run_compare(name_1, name_2, text):
    classifier_1 = pipeline("text-classification", model=name_1)
    result_1 = classifier_1(text)
    out_1 = {}
    out_1["Model"] = name_1
    out_1["Label"] = result_1[0]["label"]
    out_1["Score"] = result_1[0]["score"]
    classifier_2 = pipeline("text-classification", model=name_2)
    result_2 = classifier_2(text)
    out_2 = {}
    out_2["Model"] = name_2
    out_2["Label"] = result_2[0]["label"]
    out_2["Score"] = result_2[0]["score"]
    return [out_1, out_2]