File size: 10,355 Bytes
0e43e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7d102
0e43e41
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp\\\\research'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.chdir(\"../\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "@dataclass(frozen=True)\n",
    "class ModelTrainingConfig:\n",
    "    root_dir : Path\n",
    "    model_path : Path\n",
    "    prepared_train_data : Path\n",
    "    prepared_test_data : Path\n",
    "    preprocessor_obj_file_path : Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from insurancePP.constants import *\n",
    "from insurancePP.utils.common import read_yaml, create_directories, save_object, load_object"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ConfigurationManager:\n",
    "    def __init__(self, config_filepath = CONFIG_FILE_PATH, params_filepath = PARAMS_FILE_PATH):\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "\n",
    "        create_directories([self.config.artifacts_root])\n",
    "\n",
    "    def get_model_training_configuration(self) -> ModelTrainingConfig:\n",
    "        config = self.config.model_trainer\n",
    "        create_directories([config.root_dir])\n",
    "\n",
    "        model_training_config = ModelTrainingConfig(\n",
    "            root_dir = config.root_dir,\n",
    "            model_path = config.model_path,\n",
    "            prepared_train_data = config.prepared_train_data,\n",
    "            prepared_test_data = config.prepared_test_data,\n",
    "            preprocessor_obj_file_path = config.preprocessor_obj_file_path\n",
    "        )\n",
    "\n",
    "        return model_training_config\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from numpy import load\n",
    "\n",
    "from insurancePP.logging import logger\n",
    "\n",
    "from insurancePP.constants import *\n",
    "from insurancePP.utils.common import read_yaml, create_directories, save_object, load_object, evaluate_models\n",
    "\n",
    "from dataclasses import dataclass\n",
    "from catboost import CatBoostRegressor\n",
    "from sklearn.ensemble import (\n",
    "    AdaBoostRegressor,\n",
    "    GradientBoostingRegressor,\n",
    "    RandomForestRegressor,\n",
    ")\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from sklearn.metrics import r2_score\n",
    "from sklearn.neighbors import KNeighborsRegressor\n",
    "from sklearn.tree import DecisionTreeRegressor\n",
    "from xgboost import XGBRegressor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ModelTraining:\n",
    "    def __init__(self, config : ModelTrainingConfig):\n",
    "        self.config = config\n",
    "    \n",
    "\n",
    "    def initiate_model_trainer(self):\n",
    "        try:\n",
    "            logger.info(\"loading the training and testing data\")\n",
    "            train_arr = load(self.config.prepared_train_data)\n",
    "            test_arr = load(self.config.prepared_test_data)\n",
    "\n",
    "            logger.info(\"spliting the training and testing data\")\n",
    "            X_train, y_train, X_test, y_test = (\n",
    "                train_arr[:, :-1],\n",
    "                train_arr[:, -1],\n",
    "                test_arr[:, :-1],\n",
    "                test_arr[:, -1],\n",
    "            )\n",
    "\n",
    "            models = {\n",
    "                \"Random Forest\": RandomForestRegressor(),\n",
    "                \"Decision Tree\": DecisionTreeRegressor(),\n",
    "                \"Gradient Boosting\": GradientBoostingRegressor(),\n",
    "                \"Linear Regression\": LinearRegression(),\n",
    "                \"XGBRegressor\": XGBRegressor(),\n",
    "                \"CatBoosting Regressor\": CatBoostRegressor(verbose=False),\n",
    "                \"AdaBoost Regressor\": AdaBoostRegressor(),\n",
    "            }\n",
    "\n",
    "            params={\n",
    "                \"Decision Tree\": {\n",
    "                    'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],\n",
    "                },\n",
    "                \"Random Forest\":{\n",
    "                    'n_estimators': [8,16,32,64,128,256]\n",
    "                },\n",
    "                \"Gradient Boosting\":{\n",
    "                    # 'learning_rate':[.1,.01,.05,.001],\n",
    "                    'n_estimators': [8,16,32,64,128,256]\n",
    "                },\n",
    "                \"Linear Regression\":{},\n",
    "                \"XGBRegressor\":{\n",
    "                    'learning_rate':[.1,.01,.05,.001],\n",
    "                    'n_estimators': [8,16,32,64,128,256]\n",
    "                },\n",
    "                \"CatBoosting Regressor\":{\n",
    "                    'depth': [6,8,10],\n",
    "                    'learning_rate': [0.01, 0.05, 0.1],\n",
    "                    'iterations': [30, 50, 100]\n",
    "                },\n",
    "                \"AdaBoost Regressor\":{\n",
    "                    'learning_rate':[.1,.01,0.5,.001],\n",
    "                    'n_estimators': [8,16,32,64,128,256]\n",
    "                }\n",
    "            }\n",
    "\n",
    "            \n",
    "            model_report : dict = evaluate_models(X_train, y_train, X_test, y_test, models, params)\n",
    "         \n",
    "            performance_df = pd.DataFrame(list(zip(model_report.keys(), model_report.values())), columns=['Model Name', 'R2_Score']).sort_values(by=[\"R2_Score\"],ascending=False)\n",
    "            logger.info(f'Model Report: \\n {performance_df}')\n",
    "\n",
    "            best_model_score = max(sorted(model_report.values()))\n",
    "            best_model_name = list(model_report.keys())[list(model_report.values()).index(best_model_score)]\n",
    "            best_model = models[best_model_name]\n",
    "\n",
    "            # if best_model_score < 0.6:\n",
    "            #     raise e\n",
    "            # logging.info(f\"Best model found on both training and testing dataset\")\n",
    "    \n",
    "            save_object(\n",
    "                file_path = Path(self.config.model_path),\n",
    "                obj = best_model\n",
    "            )\n",
    "\n",
    "            predict = best_model.predict(X_test)\n",
    "            r2 = r2_score(y_test, predict)\n",
    "            \n",
    "\n",
    "        except Exception as e:\n",
    "            raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-25 21:29:34,497 : INFO : common : yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-02-25 21:29:34,501 : INFO : common : yaml file: params.yaml loaded successfully]\n",
      "[2024-02-25 21:29:34,504 : INFO : common : directory artifacts created]\n",
      "[2024-02-25 21:29:34,506 : INFO : common : directory artifacts/model_trainer created]\n",
      "[2024-02-25 21:29:34,508 : INFO : 177425094 : loading the training and testing data]\n",
      "[2024-02-25 21:29:34,513 : INFO : 177425094 : spliting the training and testing data]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-25 21:30:42,646 : INFO : 177425094 : Model Report: \n",
      "               Model Name  R2_Score\n",
      "5  CatBoosting Regressor  0.884958\n",
      "2      Gradient Boosting  0.880510\n",
      "6     AdaBoost Regressor  0.869562\n",
      "4           XGBRegressor  0.868819\n",
      "0          Random Forest  0.864245\n",
      "3      Linear Regression  0.778228\n",
      "1          Decision Tree  0.756036]\n",
      "[2024-02-25 21:30:42,663 : INFO : common : Binary Object is stored]\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    config = ConfigurationManager()\n",
    "    data_training_config = config.get_model_training_configuration()\n",
    "    model_trainer = ModelTraining(config = data_training_config)\n",
    "    model_trainer.initiate_model_trainer()\n",
    "    \n",
    "except Exception as e:\n",
    "    raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "0.0.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}