File size: 5,863 Bytes
9c7d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f2652
 
 
9c7d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f2652
9c7d102
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp\\\\research'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.chdir(\"../\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "@dataclass(frozen=True)\n",
    "class ModelPredictionConfig:\n",
    "    root_dir : Path\n",
    "    preprocessor_obj_file_path : Path\n",
    "    model_path : Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from insurancePP.logging import logger\n",
    "from insurancePP.utils.common import read_yaml, create_directories, load_object\n",
    "from insurancePP.constants import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ConfigurationManager:\n",
    "    def __init__(self, config_filepath = CONFIG_FILE_PATH, params_filepath = PARAMS_FILE_PATH):\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "        create_directories([self.config.artifacts_root])\n",
    "\n",
    "    def get_model_prediction_config(self) -> ModelPredictionConfig:\n",
    "        config = self.config.model_prediction\n",
    "        create_directories([config.root_dir])\n",
    "\n",
    "        return ModelPredictionConfig(\n",
    "            root_dir = config.root_dir,\n",
    "            preprocessor_obj_file_path = config.preprocessor_obj_file_path,\n",
    "            model_path = config.model_path\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ModelPrediction:\n",
    "    def __init__(self, config : ModelPredictionConfig):\n",
    "        self.config = config\n",
    "        \n",
    "    def predict_sample_data(self, data):\n",
    "        preprocessor = load_object(self.config.preprocessor_obj_file_path)\n",
    "        model = load_object(self.config.model_path)\n",
    "\n",
    "        logger.info(\"Both preprocessor and model are loaded successfully from disk\")\n",
    "        return model.predict(preprocessor.transform(data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "sample = pd.DataFrame({'age':[19], 'sex':['female'], 'bmi':[27.9], 'children':[0], 'smoker':['yes'], 'region':['southwest']})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age           int64\n",
       "sex          object\n",
       "bmi         float64\n",
       "children      int64\n",
       "smoker       object\n",
       "region       object\n",
       "dtype: object"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sample.dtypes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-27 20:16:02,081 : INFO : common : yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-02-27 20:16:02,086 : INFO : common : yaml file: params.yaml loaded successfully]\n",
      "[2024-02-27 20:16:02,089 : INFO : common : directory artifacts created]\n",
      "[2024-02-27 20:16:02,092 : INFO : common : directory artifacts/model_prediction created]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-27 20:16:03,269 : INFO : 82938115 : Both preprocessor and model are loaded successfully from disk]\n",
      "[18381.42742799]\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    config = ConfigurationManager()\n",
    "    model_prediction_config = config.get_model_prediction_config()\n",
    "    model_prediction = ModelPrediction(config = model_prediction_config)\n",
    "    result = model_prediction.predict_sample_data(sample)\n",
    "    print(result)\n",
    "    \n",
    "except Exception as e:\n",
    "    raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# temp comment"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}