File size: 6,438 Bytes
830ee7a
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
0e43e41
 
 
830ee7a
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43e41
 
 
830ee7a
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
0e43e41
830ee7a
0e43e41
 
830ee7a
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830ee7a
 
 
 
0e43e41
830ee7a
 
 
 
 
 
0e43e41
 
 
 
 
 
 
 
 
 
 
 
 
830ee7a
 
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43e41
830ee7a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp\\\\research'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.chdir(\"../\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\Users\\\\nikhil\\\\OneDrive\\\\Desktop\\\\ML Projects\\\\ipp'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class DataIngestionConfig:\n",
    "    root_dir: Path\n",
    "    source_URL: str\n",
    "    local_data_file: Path\n",
    "    train_data_file: Path\n",
    "    test_data_file: Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "from insurancePP.constants import *\n",
    "from insurancePP.utils.common import read_yaml, create_directories"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ConfigurationManager:\n",
    "    def __init__(self, config_filepath= CONFIG_FILE_PATH, params_filepath= PARAMS_FILE_PATH):\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "        \n",
    "        create_directories([self.config.artifacts_root])\n",
    "        # logger.info(f\"Root directory {self.config.artifacts_root} created successfully\") \n",
    "        \n",
    "   \n",
    "    def get_data_ingestion_config(self) -> DataIngestionConfig:\n",
    "        config = self.config.data_ingestion\n",
    "        create_directories([config.root_dir])\n",
    "\n",
    "        data_ingestion_config = DataIngestionConfig(\n",
    "            root_dir = config.root_dir,\n",
    "            source_URL = config.source_URL,\n",
    "            local_data_file = config.local_data_file,\n",
    "            train_data_file = config.train_data_file,\n",
    "            test_data_file = config.test_data_file\n",
    "        )\n",
    "\n",
    "        return data_ingestion_config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import urllib.request as request\n",
    "import zipfile\n",
    "import pandas as pd\n",
    "from insurancePP.logging import logger\n",
    "from insurancePP.utils.common import get_size\n",
    "from sklearn.model_selection import train_test_split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "class DataIngestion:\n",
    "    def __init__(self, config: DataIngestionConfig):\n",
    "        self.config = config\n",
    "\n",
    "    def download_file(self):\n",
    "        if not os.path.exists(self.config.local_data_file):\n",
    "            filename, headers = request.urlretrieve(\n",
    "                url = self.config.source_URL,\n",
    "                filename = self.config.local_data_file\n",
    "            )\n",
    "            logger.info(f'Downloaded {filename} to {self.config.local_data_file}')\n",
    "        else:\n",
    "            logger.info(f'File {self.config.local_data_file} already exists')\n",
    "\n",
    "\n",
    "    def initiate_data_ingestion(self):\n",
    "        logger.info(\"Entered inside the data ingestion component\")\n",
    "\n",
    "        try:\n",
    "            data = pd.read_csv(self.config.local_data_file)\n",
    "            logger.info(\"train test split initiated\")\n",
    "\n",
    "            train, test = train_test_split(data, test_size=0.2, random_state=50)\n",
    "            train.to_csv(self.config.train_data_file)\n",
    "            test.to_csv(self.config.test_data_file)\n",
    "        except Exception as e:\n",
    "            raise e\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-25 12:08:14,157 : INFO : common : yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-02-25 12:08:14,161 : INFO : common : yaml file: params.yaml loaded successfully]\n",
      "[2024-02-25 12:08:14,164 : INFO : common : directory artifacts created]\n",
      "[2024-02-25 12:08:14,166 : INFO : common : directory artifacts/data_ingestion created]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-02-25 12:08:15,563 : INFO : 489743891 : Downloaded artifacts/data_ingestion/data.csv to artifacts/data_ingestion/data.csv]\n",
      "[2024-02-25 12:08:15,563 : INFO : 489743891 : Entered inside the data ingestion component]\n",
      "[2024-02-25 12:08:15,592 : INFO : 489743891 : train test split initiated]\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    config = ConfigurationManager()\n",
    "    data_ingestion_config = config.get_data_ingestion_config()\n",
    "    data_ingestion = DataIngestion(data_ingestion_config)\n",
    "    data_ingestion.download_file()\n",
    "    data_ingestion.initiate_data_ingestion()\n",
    "\n",
    "except Exception as e:\n",
    "    raise e"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "0.0.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}