Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,681 Bytes
06a60a3 a791472 06a60a3 a791472 06a60a3 a791472 b91e31d 06a60a3 b91e31d a791472 b91e31d a791472 8d6d31e a791472 b91e31d 06a60a3 b91e31d 06a60a3 dbf5fb1 7162f12 06a60a3 b91e31d a791472 06a60a3 7162f12 b91e31d a791472 06a60a3 b91e31d 06a60a3 b91e31d 06a60a3 dbf5fb1 b91e31d 06a60a3 b91e31d 06a60a3 b91e31d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from contextlib import contextmanager
import gradio as gr
from markup import get_text, highlight
from template import get_templates
templates = get_templates()
def fill_tab(title, explanation):
"""
Fill the tab with the appropriate title and explanation.
"""
return gr.Markdown(title), gr.Markdown(explanation)
@contextmanager
def new_section():
"""
A context manager to create a new section in the interface. Equivalent of:
```python
with gr.Row():
with gr.Column():
...
```
"""
with gr.Row():
with gr.Column():
yield
def change(inp, textbox):
"""Based on an `inp`, render and highlight the appropriate code sample.
Args:
inp (`str`):
The input button from the interface.
textbox (`str`):
The textbox specifying the tab name from the interface.
Returns:
`tuple`: A tuple of the highlighted code diff, and the title for the section.
"""
if textbox == "base":
code, explanation, docs = get_text(inp, textbox)
if inp == "Basic":
return (
highlight(code),
"## Accelerate Code (Base Integration)",
explanation,
docs,
)
elif inp == "Calculating Metrics":
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs)
else:
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs)
elif textbox == "training_configuration":
yaml, changes, command, explanation, docs = get_text(inp, textbox)
return (highlight(yaml), highlight(changes), command, explanation, docs)
else:
raise ValueError(f"Invalid tab name: {textbox}")
default_base = change("Basic", "base")
default_training_config = change("Multi GPU", "training_configuration")
def base_features(textbox):
inp = gr.Radio(
[
"Basic",
"Calculating Metrics",
"Checkpointing",
"Experiment Tracking",
"Gradient Accumulation",
],
label="Select a feature you would like to integrate",
value="Basic",
)
with new_section():
feature, out = fill_tab("## Accelerate Code", default_base[0])
with new_section():
_, explanation = fill_tab("## Explanation", default_base[2])
with new_section():
_, docs = fill_tab("## Documentation Links", default_base[3])
inp.change(
fn=change, inputs=[inp, textbox], outputs=[out, feature, explanation, docs]
)
def training_config(textbox):
inp = gr.Radio(
[
"AWS SageMaker",
"DeepSpeed",
"Megatron-LM",
"Multi GPU",
"Multi Node Multi GPU",
"PyTorch FSDP",
],
label="Select a distributed YAML configuration you would like to view.",
value="Multi GPU",
)
with new_section():
_, yaml = fill_tab("## Example YAML Configuration", default_training_config[0])
with new_section():
_, changes = fill_tab(
"## Changes to Training Script", default_training_config[1]
)
with new_section():
_, command = fill_tab("## Command to Run Training", default_training_config[2])
with new_section():
_, explanation = fill_tab("## Explanation", default_training_config[3])
with new_section():
_, docs = fill_tab("## Documentation Links", default_training_config[4])
inp.change(
fn=change,
inputs=[inp, textbox],
outputs=[yaml, changes, command, explanation, docs],
)
# def big_model_inference():
# inp = gr.Radio(
# ["Accelerate's Big Model Inference",], # "DeepSpeed ZeRO Stage-3 Offload"
# label="Select a feature you would like to integrate",
# value="Basic",
# )
# with gr.Row():
# with gr.Column():
# feature = gr.Markdown("## Accelerate Code")
# out = gr.Markdown(default[0])
# with gr.Row():
# with gr.Column():
# gr.Markdown(default[1])
# explanation = gr.Markdown(default[2])
# with gr.Row():
# with gr.Column():
# gr.Markdown("## Documentation Links")
# docs = gr.Markdown(default[3])
# inp.change(fn=change, inputs=[inp, "big_model_inference"], outputs=[out, feature, explanation, docs])
# def notebook_launcher():
# inp = gr.Radio(
# ["Colab GPU", "Colab TPU", "Kaggle GPU", "Kaggle Multi GPU", "Kaggle TPU", "Multi GPU VMs"],
# label="Select a feature you would like to integrate",
# value="Basic",
# )
# with gr.Row():
# with gr.Column():
# feature = gr.Markdown("## Accelerate Code")
# out = gr.Markdown(default[0])
# with gr.Row():
# with gr.Column():
# gr.Markdown(default[1])
# explanation = gr.Markdown(default[2])
# with gr.Row():
# with gr.Column():
# gr.Markdown("## Documentation Links")
# docs = gr.Markdown(default[3])
# inp.change(fn=change, inputs=[inp, "notebook_launcher"], outputs=[out, feature, explanation, docs])
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Basic Training Integration"):
textbox = gr.Textbox(label="tab_name", visible=False, value="base")
base_features(textbox)
with gr.TabItem("Launch Configuration"):
textbox = gr.Textbox(
label="tab_name", visible=False, value="training_configuration"
)
training_config(textbox)
demo.launch()
|