Spaces:
Sleeping
Sleeping
File size: 22,329 Bytes
53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 051a9e7 53cee63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
from typing import List, Dict, Any
from typing import Tuple
import gradio as gr
import polars as pl
import time
from datetime import datetime, timedelta
from datetime import time as dt_time
import pandas as pd
from tqdm import tqdm
import geopy.distance
import requests
import re
import os
from bs4 import BeautifulSoup
from cachetools import cached, TTLCache
import concurrent.futures
from functools import partial
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
def get_geo_optimal_stop(
method: str, selected_stops: List[str], show_top: int = 20
) -> List[str]:
"""
Calculate and return the top optimal geographic stops based on a specified method.
Args:
method (str): Optimization method, either "minimize-worst-case" or "minimize-total".
selected_stops (List[str]): A list of selected stop identifiers.
show_top (int, optional): Number of top results to return. Defaults to 20.
Returns:
List[str]: A list of the top optimal stops based on the selected method.
Raises:
ValueError: If the method is not recognized.
"""
global DISTANCE_TABLE
dfs = []
for si, stop in tqdm(
enumerate(selected_stops),
desc="Calculating optimal stops",
total=len(selected_stops),
):
df = (
DISTANCE_TABLE.filter(pl.col("from") == stop)
.drop("from")
.with_columns(
pl.col("to").alias("target_stop"),
pl.col("distance_in_km").alias(f"distance_in_km_{si}"),
)
.select("target_stop", f"distance_in_km_{si}")
)
dfs.append(df)
print("Joining dataframes ...")
df = dfs[0]
for i in range(1, len(dfs)):
df = df.join(dfs[i], on="target_stop")
print("Finidng optimal stops ...")
df = df.with_columns(
pl.max_horizontal(
*[f"distance_in_km_{si}" for si in range(len(selected_stops))]
).alias("worst_case_km"),
pl.sum_horizontal(
*[f"distance_in_km_{si}" for si in range(len(selected_stops))]
).alias("total_km"),
)
if method == "minimize-worst-case":
df = df.sort("worst_case_km")
elif method == "minimize-total":
df = df.sort("total_km")
return df.head(show_top)["target_stop"].to_list()
def get_time_optimal_stop(
method: str, selected_stops: List[str], show_top: int = 20
) -> List[str]:
"""
Calculate and return the top optimal geographic stops based on a specified method using total travel time.
Args:
method (str): Optimization method, either "minimize-worst-case" or "minimize-total".
selected_stops (List[str]): A list of selected stop identifiers.
show_top (int, optional): Number of top results to return. Defaults to 20.
Returns:
List[str]: A list of the top optimal stops based on the selected method
Raises:
ValueError: If the method is not recognized.
"""
global DISTANCE_TABLE
dfs = []
for si, stop in tqdm(
enumerate(selected_stops),
desc="Calculating optimal stops",
total=len(selected_stops),
):
df = (
DISTANCE_TABLE.filter(pl.col("from") == stop)
.drop("from")
.with_columns(
pl.col("to").alias("target_stop"),
pl.col("total_minutes").alias(f"total_minutes_{si}"),
)
.select("target_stop", f"total_minutes_{si}")
)
dfs.append(df)
print("Joining dataframes ...")
df = dfs[0]
for i in range(1, len(dfs)):
df = df.join(dfs[i], on="target_stop")
print("Finding optimal stops ...")
df = df.with_columns(
pl.max_horizontal(
*[f"total_minutes_{si}" for si in range(len(selected_stops))]
).alias("worst_case_minutes"),
pl.sum_horizontal(
*[f"total_minutes_{si}" for si in range(len(selected_stops))]
).alias("total_minutes"),
)
if method == "minimize-worst-case":
df = df.sort("worst_case_minutes")
elif method == "minimize-total":
df = df.sort("total_minutes")
else:
raise ValueError(f"Unknown method: {method}")
return df.head(show_top)["target_stop"].to_list()
def get_optimal_stop(
method: str, selected_stops: List[str], show_top_geo: int = 20, show_top_time: int = 20
) -> List[str]:
"""
Calculate and return the top optimal geographic stops based on a specified method.
Args:
method (str): Optimization method, either "minimize-worst-case" or "minimize-total".
selected_stops (List[str]): A list of selected stop identifiers.
show_top_geo (int, optional): Number of top results to return for geographic optimization. Defaults to 20.
show_top_time (int, optional): Number of top results to return for time optimization. Defaults to 20.
Returns:
List[str]: A list of the top optimal stops based on the selected method.
Raises:
ValueError: If the method is not recognized.
"""
global DISTANCE_TABLE
geo_optimal_stops = get_geo_optimal_stop(method, selected_stops, show_top_geo)
print(geo_optimal_stops)
time_optimal_stops = get_time_optimal_stop(method, selected_stops, show_top_time)
print(time_optimal_stops)
print()
print([s for s in geo_optimal_stops if s not in time_optimal_stops])
print([s for s in time_optimal_stops if s not in geo_optimal_stops])
print()
print(list(set(geo_optimal_stops) & set(time_optimal_stops)))
print(list(set(geo_optimal_stops) | set(time_optimal_stops)))
return list(set(geo_optimal_stops) | set(time_optimal_stops))
def validate_date_time(date_str: str, time_str: str) -> Tuple[bool, str]:
"""
Validates a date and time string against specific criteria.
Args:
date_str (str): The date string to validate, in the format 'DD/MM/YYYY'.
time_str (str): The time string to validate, in the format 'HH:MM'.
Returns:
Tuple[bool, str]: A tuple containing a boolean indicating if the input is valid,
and a string message indicating the error if invalid, or an empty string if valid.
"""
try:
event_datetime = datetime.strptime(f"{date_str} {time_str}", "%d/%m/%Y %H:%M")
except ValueError:
return (
False,
"Invalid date or time format. Please ensure date is DD/MM/YYYY and time is HH:MM.",
)
now = datetime.now()
three_months_later = now + timedelta(days=90) # Approximation of 3 months
if event_datetime <= now:
return False, "The selected date and time must be in the future."
if event_datetime > three_months_later:
return (
False,
"The selected date and time must not be more than 3 months in the future.",
)
return True, ""
def get_next_meetup_time(target_weekday: int, target_hour: int) -> datetime:
"""
Calculate the next occurrence of a meetup based on the target weekday and hour.
Args:
target_weekday (int): The day of the week for the meetup, where Monday is 0
and Sunday is 6.
target_hour (int): The hour of the day for the meetup (24-hour format).
Returns:
datetime: A datetime object representing the next occurrence of the meetup
with the specified weekday and hour.
Raises:
ValueError: If `target_hour` is not between 0 and 23 inclusive.
"""
start_dt = datetime.now()
current_weekday = start_dt.weekday()
days_ahead = target_weekday - current_weekday
if days_ahead == 0:
if start_dt.time() >= dt_time(target_hour, 0):
days_ahead = 7
else:
days_ahead = 0
elif days_ahead < 0:
days_ahead += 7
next_dt = start_dt + timedelta(days=days_ahead)
next_dt = next_dt.replace(hour=target_hour, minute=0, second=0, microsecond=0)
return next_dt
def parse_time_to_minutes(time_str: str) -> int:
"""
Parses a time string and converts it to a total number of minutes.
Args:
time_str (str): A string representing the time in hours and/or minutes.
Returns:
int: The total number of minutes calculated from the given time string.
Raises:
ValueError: If the time string is in an invalid format, or if negative values
or invalid values for hours or minutes are provided.
"""
pattern = r"^\s*(?:(\d+)\s*hod)?(?:\s*(\d+)\s*min)?\s*$"
match = re.match(pattern, time_str, re.IGNORECASE)
if not match:
raise ValueError(f"Invalid time format: '{time_str}'")
hours_str, minutes_str = match.groups()
hours = int(hours_str) if hours_str else 0
minutes = int(minutes_str) if minutes_str else 0
if hours < 0:
raise ValueError("Hours cannot be negative.")
if minutes < 0:
raise ValueError("Minutes cannot be negative.")
if minutes >= 60:
raise ValueError("Minutes must be less than 60.")
total_minutes = hours * 60 + minutes
return total_minutes
def get_total_minutes(from_stop: str, to_stop: str, dt: datetime) -> int:
"""
Sends a POST request to the specified URL using Webshare's rotating proxy and parses the response to extract time in minutes.
Args:
from_stop (str): The departure stop.
to_stop (str): The arrival stop.
dt (datetime.datetime): The date and time for the query.
Returns:
int: The total time in minutes extracted from the response.
Raises:
requests.HTTPError: If the HTTP request returned an unsuccessful status code.
ValueError: If expected HTML elements are not found in the response.
"""
if from_stop == to_stop:
return 0
day_abbreviations = {
0: "po", # Monday -> po
1: "út", # Tuesday -> út
2: "st", # Wednesday -> st
3: "čt", # Thursday -> čt
4: "pá", # Friday -> pá
5: "so", # Saturday -> so
6: "ne", # Sunday -> ne
}
day = dt.day
month = dt.month
year = dt.year
weekday = dt.weekday()
abbreviation = day_abbreviations.get(weekday, "")
date_str = f"{day}.{month}.{year} {abbreviation}"
time_str = dt.strftime("%H:%M")
headers = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9",
"cache-control": "max-age=0",
"content-type": "application/x-www-form-urlencoded",
"dnt": "1",
"origin": "https://idos.cz",
"priority": "u=0, i",
"referer": "https://idos.cz/pid/spojeni/",
}
data = [
("From", from_stop),
("positionACPosition", ""),
("To", to_stop),
("positionACPosition", ""),
("AdvancedForm.Via[0]", ""),
("AdvancedForm.ViaHidden[0]", ""),
("Date", date_str),
("Time", time_str),
("IsArr", "True"),
]
url = "https://idos.cz/pid/spojeni/"
proxy_domain = os.getenv("PROXY_DOMAIN")
proxy_port = os.getenv("PROXY_PORT")
proxy_username = os.getenv("PROXY_USERNAME")
proxy_password = os.getenv("PROXY_PASSWORD")
proxy_url = f"http://{proxy_username}:{proxy_password}@{proxy_domain}:{proxy_port}"
proxies = {
"http": proxy_url,
"https": proxy_url,
}
try:
if proxy_domain is None:
response = requests.post(url, headers=headers, data=data, timeout=15)
else:
response = requests.post(
url, headers=headers, data=data, proxies=proxies, timeout=15
)
response.raise_for_status()
except requests.RequestException as e:
raise requests.HTTPError(f"Failed to retrieve data from {url}.") from e
soup = BeautifulSoup(response.content, "html.parser")
connection_head = soup.find(class_="connection-head")
if not connection_head:
raise ValueError("No elements found with the class 'connection-head'.")
strong_tag = connection_head.find("strong")
if not strong_tag:
raise ValueError(
"No <strong> tag found within the first 'connection-head' element."
)
time_str_response = strong_tag.get_text(strip=True)
total_minutes = parse_time_to_minutes(time_str_response)
return total_minutes
@cached(cache=TTLCache(maxsize=10**6, ttl=24 * 60 * 60))
def get_total_minutes_with_retries(
from_stop: str,
to_stop: str,
dt: datetime,
max_retries: int = 3,
retry_delay: int = 2,
) -> int:
"""
Calculate the total travel time in minutes between two stops with retry functionality.
Parameters:
from_stop (str): The name of the starting stop.
to_stop (str): The name of the destination stop.
dt (datetime): The date and time for which the travel time is being calculated.
max_retries (int, optional): Maximum number of retry attempts if an error occurs. Default is 3.
retry_delay (int, optional): Delay in seconds between retry attempts. Default is 2 seconds.
Returns:
int: The total travel time in minutes if successful, or `None` if all attempts fail.
"""
attempt = 0
while attempt < max_retries:
try:
total_minutes = get_total_minutes(from_stop, to_stop, dt)
return total_minutes
except Exception as e:
attempt += 1
if attempt < max_retries:
print(
f"Error processing pair ({from_stop}, {to_stop}): {e}. Retrying in {retry_delay} seconds... (Attempt {attempt}/{max_retries})"
)
time.sleep(retry_delay)
else:
print(
f"Failed to process pair ({from_stop}, {to_stop}) after {max_retries} attempts."
)
return None
return None
def get_actual_time_optimal_stop(
method: str,
selected_stops: List[str],
target_stops: List[str],
event_datetime: datetime,
show_top: int = 20,
) -> pl.DataFrame:
"""Calculate optimal stop times for a list of target stops.
Args:
method (str): The method for optimization. Can be 'minimize-worst-case' or 'minimize-total'.
selected_stops (List[str]): A list of selected stops to calculate travel times from.
target_stops (List[str]): A list of target stops to calculate travel times to.
event_datetime (datetime.datetime): The date and time of the event for which travel times are calculated.
show_top (int, optional): The number of top optimal stops to display, defaults to 20.
Returns:
polars.DataFrame: A DataFrame containing the calculated stop times, sorted according to the selected method.
Raises:
Exception: If there's an error processing any stop pair, it's logged, and the function continues.
"""
def process_target_stop(args):
target_stop, selected_stops, event_datetime = args
row = {"target_stop": target_stop}
for si, from_stop in enumerate(selected_stops):
try:
total_minutes = get_total_minutes_with_retries(
from_stop, target_stop, event_datetime
)
row[f"total_minutes_{si}"] = total_minutes
except Exception as e:
print(f"Error processing pair ({from_stop}, {target_stop}): {e}")
traceback.print_exc()
row[f"total_minutes_{si}"] = None
return row
rows = []
arguments = [
(target_stop, selected_stops, event_datetime) for target_stop in target_stops
]
with ThreadPoolExecutor(max_workers=5) as executor:
futures = {
executor.submit(process_target_stop, arg): arg[0] for arg in arguments
}
for future in tqdm(as_completed(futures), total=len(arguments)):
try:
result = future.result()
rows.append(result)
except Exception as e:
print(f"An error occurred with target_stop={futures[future]}: {e}")
df_times = pl.DataFrame(rows).with_columns(
pl.max_horizontal(
*[f"total_minutes_{si}" for si in range(len(selected_stops))]
).alias("worst_case_minutes"),
pl.sum_horizontal(
*[f"total_minutes_{si}" for si in range(len(selected_stops))]
).alias("total_minutes"),
)
if method == "minimize-worst-case":
df_times = df_times.sort("worst_case_minutes")
elif method == "minimize-total":
df_times = df_times.sort("total_minutes")
df_times = df_times.rename(
{"worst_case_minutes": "Worst Case Minutes", "total_minutes": "Total Minutes"}
)
for si in range(len(selected_stops)):
df_times = df_times.rename({f"total_minutes_{si}": f"t{si+1} mins"})
df_times = df_times.drop_nulls()
return df_times.head(show_top)
def cerate_app():
with gr.Blocks() as app:
gr.Markdown("## Optimal Public Transport Stop Finder in Prague")
gr.Markdown(
"""
Consider you are in Prague and you want to meet with your friends. What is the optimal stop to meet? Now you can find that with this app!
Time table data are being scraped from IDOS API, IDOS uses PID timetable data."""
)
number_of_stops = gr.Slider(
minimum=2, maximum=12, step=1, value=3, label="Number of People"
)
method = gr.Radio(
choices=["Minimize worst case for each", "Minimize total time"],
value="Minimize worst case for each",
label="Optimization Method",
)
next_dt = get_next_meetup_time(4, 20) # Friday 20:00
next_date = next_dt.strftime("%d/%m/%Y")
next_time = next_dt.strftime("%H:%M")
date_input = gr.Textbox(
label="Date (DD/MM/YYYY)", placeholder=f"e.g., {next_date}", value=next_date
)
time_input = gr.Textbox(
label="Time (HH:MM)", placeholder=f"e.g., {next_time}", value=next_time
)
dropdowns = []
for i in range(12):
dd = gr.Dropdown(
choices=ALL_STOPS, label=f"Choose Starting Stop #{i+1}", visible=False
)
dropdowns.append(dd)
def update_dropdowns(n):
updates = []
for i in range(12):
if i < n:
updates.append(gr.update(visible=True))
else:
updates.append(gr.update(visible=False))
return updates
number_of_stops.change(
fn=update_dropdowns, inputs=number_of_stops, outputs=dropdowns
)
search_button = gr.Button("Search")
def search_optimal_stop(
num_stops, chosen_method, date_str, time_str, *all_stops
):
is_valid, error_message = validate_date_time(date_str, time_str)
if not is_valid:
raise gr.Error(error_message)
selected_stops = [stop for stop in all_stops[:num_stops] if stop]
print("Number of stops:", num_stops)
print("Method selected:", chosen_method)
print("Selected stops:", selected_stops)
print("Selected date:", date_str)
print("Selected time:", time_str)
if chosen_method == "Minimize worst case for each":
method = "minimize-worst-case"
else:
method = "minimize-total"
try:
event_datetime = datetime.strptime(
f"{date_str} {time_str}", "%d/%m/%Y %H:%M"
)
print("Event DateTime:", event_datetime)
except ValueError as e:
raise gr.Error(f"Error parsing date and time: {e}")
target_stops = get_optimal_stop(method, selected_stops, show_top_geo=10, show_top_time=SHOW_TOP+10)
print(target_stops)
df_times = get_actual_time_optimal_stop(
method, selected_stops, target_stops, event_datetime, show_top=SHOW_TOP
)
df_times = df_times.with_row_index("#", offset=1)
return df_times
results_table = gr.Dataframe(
headers=["Target Stop", "Worst Case Minutes", "Total Minutes"],
datatype=["str", "number", "str"],
label="Optimal Stops",
)
search_button.click(
fn=search_optimal_stop,
inputs=[number_of_stops, method, date_input, time_input] + dropdowns,
outputs=results_table,
)
app.load(
lambda: [gr.update(visible=True) for _ in range(3)]
+ [gr.update(visible=False) for _ in range(9)],
inputs=[],
outputs=dropdowns,
)
gr.Markdown("---")
gr.Markdown(
"""
Created by [Daniel Herman](https://www.hermandaniel.com), check out the code [detrin/pub-finder](https://github.com/detrin/pub-finder).
"""
)
return app
# print("Loading time table file ...")
# prague_stops = pl.read_csv("Prague_stops_geo.csv")
# print("Calculating distances between stops ...")
# stops_geo_dist = (
# prague_stops.join(prague_stops, how="cross")
# .with_columns(
# pl.struct(["lat", "lon", "lat_right", "lon_right"])
# .map_elements(
# lambda x: geopy.distance.geodesic(
# (x["lat"], x["lon"]), (x["lat_right"], x["lon_right"])
# ).km,
# return_dtype=pl.Float64,
# )
# .alias("distance_in_km")
# )
# .rename({"name": "from", "name_right": "to"})
# .select(["from", "to", "distance_in_km"])
# )
stops_geo_dist = pl.read_parquet("Prague_stops_combinations.parquet")
print(stops_geo_dist)
DISTANCE_TABLE = stops_geo_dist
from_stops = DISTANCE_TABLE["from"].unique().sort().to_list()
to_stops = DISTANCE_TABLE["to"].unique().sort().to_list()
ALL_STOPS = sorted(list(set(from_stops) & set(to_stops)))
SHOW_TOP = 15
if __name__ == "__main__":
app = cerate_app()
print("Starting app ...")
app.launch()
|