Spaces:
Running
Running
File size: 28,370 Bytes
2302206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import os
import tempfile
import gradio as gr
import ffmpeg
import logging
import whisper as openai_whisper # Renamed to avoid potential conflicts
import numpy as np
import torch
import datetime
import subprocess
import shlex
from pathlib import Path
import re # For parsing ASS/SRT
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Define fonts directory - adapt for Hugging Face environment if needed
FONTS_DIR = '/usr/share/fonts/truetype' # Common Linux font location
# Check common font locations for other OS if needed
if not os.path.exists(FONTS_DIR) and os.path.exists('/System/Library/Fonts'): # macOS
FONTS_DIR = '/System/Library/Fonts'
elif not os.path.exists(FONTS_DIR) and os.path.exists('C:\Windows\Fonts'): # Windows
FONTS_DIR = 'C:\Windows\Fonts'
FONT_PATHS = {}
ACCEPTABLE_FONTS = ['Arial', 'Helvetica', 'Times New Roman'] # Start with common fallbacks
try:
if FONTS_DIR and os.path.exists(FONTS_DIR):
logger.info(f"Searching for fonts in: {FONTS_DIR}")
found_fonts = []
for root, dirs, files in os.walk(FONTS_DIR):
for file in files:
if file.lower().endswith(('.ttf', '.otf', '.ttc')):
font_path = os.path.join(root, file)
font_name = os.path.splitext(file)[0]
# Basic name cleanup
base_font_name = re.sub(r'[-_ ]?(bold|italic|regular|medium|light|condensed)?$', '', font_name, flags=re.IGNORECASE)
if base_font_name not in FONT_PATHS:
FONT_PATHS[base_font_name] = font_path
found_fonts.append(base_font_name)
if found_fonts:
ACCEPTABLE_FONTS = sorted(list(set(found_fonts + ACCEPTABLE_FONTS)))
logger.info(f"Found system fonts: {ACCEPTABLE_FONTS}")
else:
logger.warning(f"No font files found in {FONTS_DIR}. Using defaults.")
else:
logger.warning(f"Font directory {FONTS_DIR} not found. Using defaults: {ACCEPTABLE_FONTS}")
except Exception as e:
logger.warning(f"Could not load system fonts from {FONTS_DIR}: {e}. Using defaults: {ACCEPTABLE_FONTS}")
# Global variable for Whisper model to avoid reloading
whisper_model = None
def generate_style_line(options):
"""Generate ASS style line from options. Uses common defaults.
Ensure color format is correct (&HBBGGRRAA or &HAABBGGRR depending on FFmpeg build)
Using &HBBGGRR format for PrimaryColour based on common FFmpeg usage.
"""
# Convert hex color picker (#FFFFFF) to ASS format (&HBBGGRR)
def hex_to_ass_bgr(hex_color):
hex_color = hex_color.lstrip('#')
if len(hex_color) == 6:
r, g, b = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
return f"&H{b:02X}{g:02X}{r:02X}"
return '&H00FFFFFF' # Default to white if format is wrong
primary_color_ass = hex_to_ass_bgr(options.get('primary_color', '#FFFFFF'))
style_options = {
'Name': 'Default',
'Fontname': options.get('font_name', 'Arial'), # Ensure this font is accessible to FFmpeg
'Fontsize': options.get('font_size', 24),
'PrimaryColour': primary_color_ass,
'SecondaryColour': '&H000000FF', # Often unused, but good to define
'OutlineColour': '&H00000000', # Black outline
'BackColour': '&H80000000', # Semi-transparent black background/shadow
'Bold': 0, # Use -1 for True, 0 for False in ASS
'Italic': 0,
'Underline': 0,
'StrikeOut': 0,
'ScaleX': 100,
'ScaleY': 100,
'Spacing': 0,
'Angle': 0,
'BorderStyle': 1, # 1 = Outline + Shadow
'Outline': 2, # Outline thickness
'Shadow': 1, # Shadow distance
'Alignment': options.get('alignment', 2), # 2 = Bottom Center
'MarginL': 10,
'MarginR': 10,
'MarginV': 10, # Bottom margin
'Encoding': 1 # Default ANSI encoding
}
logger.info(f"Generated ASS Style Options: {style_options}")
return f"Style: {','.join(map(str, style_options.values()))}"
def transcribe_audio(audio_path, progress=None):
"""Transcribe audio using Whisper ASR model."""
global whisper_model
logger.info(f"Starting transcription for: {audio_path}")
try:
if whisper_model is None:
safe_progress_update(progress, 0.1, "Loading Whisper model...")
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device} for Whisper")
# Use a smaller model if only CPU is available to potentially speed things up
model_size = "base" if device == "cuda" else "tiny.en" # or "tiny"
logger.info(f"Loading Whisper model size: {model_size}")
whisper_model = openai_whisper.load_model(model_size, device=device)
safe_progress_update(progress, 0.3, "Model loaded, processing audio...")
result = whisper_model.transcribe(audio_path, fp16=torch.cuda.is_available())
logger.info(f"Transcription result (first 100 chars): {str(result)[:100]}")
safe_progress_update(progress, 0.7, "Transcription complete, formatting captions...")
return result
except Exception as e:
logger.exception(f"Error transcribing audio: {audio_path}") # Use logger.exception to include traceback
raise
def format_time(seconds):
"""Format time in SRT/ASS format (H:MM:SS.ms)."""
# ASS format uses H:MM:SS.xx (hundredths of a second)
hundredths = int((seconds % 1) * 100)
s = int(seconds) % 60
m = int(seconds / 60) % 60
h = int(seconds / 3600)
return f"{h}:{m:02d}:{s:02d}.{hundredths:02d}"
def format_time_srt(seconds):
"""Format time in SRT format (HH:MM:SS,ms)."""
ms = int((seconds % 1) * 1000)
s = int(seconds) % 60
m = int(seconds / 60) % 60
h = int(seconds / 3600)
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
def generate_srt_from_transcript(segments):
"""Convert whisper segments to SRT format."""
srt_content = ""
for i, segment in enumerate(segments):
start_time = format_time_srt(segment["start"])
end_time = format_time_srt(segment["end"])
text = segment["text"].strip()
srt_content += f"{i+1}\n{start_time} --> {end_time}\n{text}\n\n"
logger.info(f"Generated SRT (first 200 chars): {srt_content[:200]}")
return srt_content.strip()
def generate_ass_dialogue_line(segment, style_name='Default'):
"""Generate a single ASS dialogue line from a segment."""
start_time = format_time(segment["start"])
end_time = format_time(segment["end"])
text = segment["text"].strip().replace('\n', '\\N') # Replace newline with ASS newline
# Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
return f"Dialogue: 0,{start_time},{end_time},{style_name},,0,0,0,,{text}"
def generate_ass_from_transcript(segments, style_options):
"""Convert whisper segments to ASS format including style header."""
style_line = generate_style_line(style_options)
ass_header = f"""
[Script Info]
Title: Generated Captions
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 384
PlayResY: 288
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
{style_line}
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
dialogue_lines = [generate_ass_dialogue_line(seg) for seg in segments]
full_ass_content = ass_header + "\n".join(dialogue_lines)
logger.info(f"Generated ASS (first 300 chars): {full_ass_content[:300]}")
return full_ass_content
def extract_audio(video_path, output_path):
"""Extract audio from video file using ffmpeg subprocess."""
logger.info(f"Attempting to extract audio from {video_path} to {output_path}")
try:
command = [
"ffmpeg", "-i", video_path,
"-vn", # No video
"-acodec", "pcm_s16le", # Standard WAV format
"-ac", "1", # Mono
"-ar", "16000", # 16kHz sample rate (common for ASR)
"-y", # Overwrite output
output_path
]
logger.info(f"Running audio extraction command: {' '.join(map(shlex.quote, command))}")
process = subprocess.run(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
encoding='utf-8', # Explicitly set encoding
check=False
)
if process.returncode != 0:
logger.error(f"FFmpeg audio extraction error (Code {process.returncode}):\nSTDOUT:\n{process.stdout}\nSTDERR:\n{process.stderr}")
return False, f"FFmpeg failed (Code {process.returncode}): {process.stderr[:500]}..."
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
logger.error(f"Audio extraction failed: Output file not created or empty. FFmpeg stderr: {process.stderr}")
return False, f"Output audio file not created or empty. FFmpeg stderr: {process.stderr[:500]}..."
logger.info(f"Audio extracted successfully to {output_path}, size: {os.path.getsize(output_path)} bytes")
return True, ""
except Exception as e:
logger.exception(f"Exception during audio extraction from {video_path}")
return False, str(e)
def run_ffmpeg_with_subtitles(video_path, subtitle_path, output_path, style_options=None):
"""Burn subtitles into video using ffmpeg subprocess.
Args:
video_path: Path to input video
subtitle_path: Path to ASS subtitle file
output_path: Path to save output video
style_options: Optional style parameters (not directly used, but kept for consistency)
Returns:
tuple: (success, error_message)
"""
logger.info(f"Attempting to burn subtitles from {subtitle_path} into {video_path}")
# Check if the subtitle file exists and is not empty
if not os.path.exists(subtitle_path) or os.path.getsize(subtitle_path) == 0:
return False, f"Subtitle file {subtitle_path} does not exist or is empty"
# Check if the video file exists
if not os.path.exists(video_path):
return False, f"Video file {video_path} does not exist"
# Validate the video file using ffprobe
try:
probe_cmd = [
"ffprobe", "-v", "error",
"-select_streams", "v:0",
"-show_entries", "stream=codec_name,width,height",
"-of", "json",
video_path
]
probe_result = subprocess.run(
probe_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
encoding='utf-8'
)
if probe_result.returncode != 0:
logger.error(f"FFprobe validation failed: {probe_result.stderr}")
return False, f"FFprobe validation failed: {probe_result.stderr[:200]}..."
except Exception as e:
logger.exception(f"Exception during video validation: {video_path}")
return False, f"Video validation failed: {str(e)}"
try:
# The subtitle path needs to be properly escaped for the filter complex
# On Windows, backslashes need special handling
subtitle_path_esc = subtitle_path.replace('\\', '\\\\')
# Ensure paths are properly quoted for the shell command
command = [
"ffmpeg",
"-i", video_path,
"-vf", f"ass='{subtitle_path_esc}'",
"-c:v", "libx264", # Use H.264 codec for broad compatibility
"-preset", "medium", # Balance between speed and quality
"-crf", "23", # Reasonable quality setting (lower is better)
"-c:a", "aac", # Use AAC for audio
"-b:a", "128k", # Decent audio bitrate
"-movflags", "+faststart", # Optimize for web playback
"-y", # Overwrite output if exists
output_path
]
logger.info(f"Running subtitle burn command: {' '.join(map(shlex.quote, command))}")
process = subprocess.run(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
encoding='utf-8',
check=False
)
if process.returncode != 0:
logger.error(f"FFmpeg subtitle burn error (Code {process.returncode}):\nSTDOUT:\n{process.stdout}\nSTDERR:\n{process.stderr}")
return False, f"FFmpeg failed (Code {process.returncode}): {process.stderr[:500]}..."
# Verify output file was created and is not empty
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
logger.error(f"Subtitle burning failed: Output file not created or empty. FFmpeg stderr: {process.stderr}")
return False, f"Output video file not created or empty. FFmpeg stderr: {process.stderr[:500]}..."
logger.info(f"Subtitles burned successfully, output: {output_path}, size: {os.path.getsize(output_path)} bytes")
return True, ""
except Exception as e:
logger.exception(f"Exception during subtitle burning: {video_path}")
return False, str(e)
def safe_progress_update(progress_callback, value, desc=""):
"""Safely update progress without crashing if progress_callback is None or fails."""
if progress_callback is not None:
try:
progress_callback(value, desc)
except Exception as e:
# Avoid flooding logs for simple progress updates
# logger.warning(f"Progress update progress failed: {e}")
pass # Silently ignore progress update errors
def parse_srt_to_dialogue(srt_content):
"""Basic SRT parser to list of dialogue events for ASS conversion."""
dialogue = []
# Regex to find index, timecodes, and text blocks
# Allows comma or period for milliseconds separator
pattern = re.compile(
r'^\s*(\d+)\s*$\n?' # Index line
r'(\d{1,2}):(\d{2}):(\d{2})[,.](\d{3})\s*-->\s*' # Start time
r'(\d{1,2}):(\d{2}):(\d{2})[,.](\d{3})\s*$\n' # End time
r'(.*?)(?=\n\s*\n\d+\s*$|\Z)', # Text block (non-greedy) until blank line and next index or end of string
re.DOTALL | re.MULTILINE
)
logger.info("Attempting to parse SRT/VTT content...")
matches_found = 0
last_index = 0
for match in pattern.finditer(srt_content):
matches_found += 1
try:
index = int(match.group(1))
sh, sm, ss, sms = map(int, match.group(2, 3, 4, 5))
eh, em, es, ems = map(int, match.group(6, 7, 8, 9))
start_sec = sh * 3600 + sm * 60 + ss + sms / 1000.0
end_sec = eh * 3600 + em * 60 + es + ems / 1000.0
text = match.group(10).strip().replace('\n', '\\N') # Replace newline with ASS \N
# Basic validation
if end_sec < start_sec:
logger.warning(f"SRT parse warning: End time {end_sec} before start time {start_sec} at index {index}. Skipping.")
continue
if not text:
logger.warning(f"SRT parse warning: Empty text content at index {index}. Skipping.")
continue
dialogue.append({'start': start_sec, 'end': end_sec, 'text': text})
last_index = match.end()
except Exception as e:
logger.warning(f"Could not parse SRT block starting near index {match.group(1)}: {e}")
# Check if parsing consumed a reasonable amount of the input
if matches_found > 0 and last_index < len(srt_content) * 0.8:
logger.warning(f"SRT parsing finished early. Found {matches_found} blocks, but stopped near character {last_index} of {len(srt_content)}. Input format might be inconsistent.")
elif matches_found == 0 and len(srt_content) > 10:
logger.error(f"SRT parsing failed. No dialogue blocks found in content starting with: {srt_content[:100]}...")
logger.info(f"Parsed {len(dialogue)} dialogue events from SRT/VTT content.")
return dialogue
def parse_ass_to_dialogue(ass_content):
"""Basic ASS parser to extract dialogue events."""
dialogue = []
# Regex for ASS Dialogue line - make capturing groups non-optional where possible
# Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
pattern = re.compile(
r'^Dialogue:\s*'
r'(?P<layer>\d+),\s*'
r'(?P<start>\d+:\d{2}:\d{2}\.\d{2}),\s*'
r'(?P<end>\d+:\d{2}:\d{2}\.\d{2}),\s*'
r'(?P<style>[^,]*),\s*' # Style name
r'(?P<name>[^,]*),\s*' # Actor name
r'(?P<marginL>\d+),\s*'
r'(?P<marginR>\d+),\s*'
r'(?P<marginV>\d+),\s*'
r'(?P<effect>[^,]*),\s*' # Effect
r'(?P<text>.*?)$', # Text (rest of line)
re.IGNORECASE
)
# Helper to convert H:MM:SS.xx to seconds
def time_to_seconds(time_str):
try:
parts = time_str.split(':')
h = int(parts[0])
m = int(parts[1])
s_parts = parts[2].split('.')
s = int(s_parts[0])
cs = int(s_parts[1])
return h * 3600 + m * 60 + s + cs / 100.0
except Exception as e:
logger.error(f"Failed to parse time string '{time_str}': {e}")
return 0.0 # Return 0 on failure to avoid crashing, but log it
logger.info("Attempting to parse ASS content...")
lines_parsed = 0
for line in ass_content.splitlines():
line = line.strip()
if not line.lower().startswith('dialogue:'):
continue
match = pattern.match(line)
if match:
lines_parsed += 1
try:
start_sec = time_to_seconds(match.group('start'))
end_sec = time_to_seconds(match.group('end'))
text = match.group('text').strip() # Already handles \N from ASS spec
if end_sec < start_sec:
logger.warning(f"ASS parse warning: End time {end_sec} before start time {start_sec} in line: '{line}'. Skipping.")
continue
if not text:
logger.warning(f"ASS parse warning: Empty text content in line: '{line}'. Skipping.")
continue
dialogue.append({'start': start_sec, 'end': end_sec, 'text': text})
except Exception as e:
logger.warning(f"Could not parse ASS dialogue line: '{line}'. Error: {e}")
else:
logger.warning(f"ASS dialogue line did not match expected pattern: '{line}'")
if lines_parsed == 0 and len(ass_content) > 50: # Check if content was substantial
logger.error(f"ASS parsing failed. No dialogue lines matched the expected pattern in content starting with: {ass_content[:200]}...")
logger.info(f"Parsed {len(dialogue)} dialogue events from {lines_parsed} matched ASS lines.")
return dialogue
def process_video_with_captions(video, captions, caption_type, font_name, font_size,
primary_color, alignment, auto_caption):
"""Main processing function."""
progress = gr.Progress(track_tqdm=True)
temp_dir = None
try:
progress(0, desc="Initializing...")
temp_dir = tempfile.mkdtemp()
logger.info(f"Created temp dir: {temp_dir}")
video_path = os.path.join(temp_dir, "input_video.mp4")
output_path = os.path.join(temp_dir, "output_video.mp4")
# Removed initial_subtitle_path, only need final
final_ass_path = os.path.join(temp_dir, "captions_final.ass")
# --- Handle Video Input ---
progress(0.05, desc="Saving video...")
if hasattr(video, 'name') and video.name and os.path.exists(video.name):
import shutil
shutil.copy(video.name, video_path)
logger.info(f"Copied input video from Gradio temp file {video.name} to {video_path}")
elif isinstance(video, str) and os.path.exists(video):
import shutil
shutil.copy(video, video_path)
logger.info(f"Copied input video from path {video} to {video_path}")
else:
raise gr.Error("Could not access uploaded video file. Please try uploading again.")
# --- Prepare Styles ---
progress(0.1, desc="Preparing styles...")
generated_captions_display_text = ""
alignment_map = {"Bottom Center": 2, "Bottom Left": 1, "Bottom Right": 3}
style_options = {
'font_name': font_name,
'font_size': font_size,
'primary_color': primary_color,
'alignment': alignment_map.get(alignment, 2)
}
# --- Auto-Generate or Process Provided Captions ---
dialogue_events = [] # To hold {'start': float, 'end': float, 'text': str}
if auto_caption:
logger.info("Auto-generating captions...")
progress(0.15, desc="Extracting audio...")
audio_path = os.path.join(temp_dir, "audio.wav")
success, error_msg = extract_audio(video_path, audio_path)
if not success: raise gr.Error(f"Audio extraction failed: {error_msg}")
progress(0.25, desc="Transcribing audio...")
transcript = transcribe_audio(audio_path, progress=progress)
if not transcript or not transcript.get("segments"): raise gr.Error("No speech detected.")
dialogue_events = transcript["segments"] # Use segments directly
progress(0.6, desc="Generating ASS captions...")
else: # Use provided captions
logger.info(f"Using provided {caption_type} captions.")
if not captions or captions.strip() == "": raise gr.Error("Caption input is empty.")
progress(0.6, desc=f"Processing {caption_type} captions...")
if caption_type.lower() == 'ass':
logger.info("Parsing provided ASS content.")
dialogue_events = parse_ass_to_dialogue(captions)
if not dialogue_events:
raise gr.Error("Could not parse dialogue lines from provided ASS content.")
elif caption_type.lower() in ['srt', 'vtt']:
logger.info(f"Parsing provided {caption_type} content.")
dialogue_events = parse_srt_to_dialogue(captions)
if not dialogue_events:
raise gr.Error(f"Could not parse provided {caption_type} content.")
else:
raise gr.Error(f"Unsupported caption type: {caption_type}")
# --- Generate Final ASS File ---
if not dialogue_events:
raise gr.Error("No caption dialogue events found or generated.")
logger.info(f"Generating final ASS file with {len(dialogue_events)} events and UI styles.")
final_ass_content = generate_ass_from_transcript(dialogue_events, style_options)
generated_captions_display_text = final_ass_content # Show the final generated ASS
with open(final_ass_path, 'w', encoding='utf-8') as f:
f.write(final_ass_content)
logger.info(f"Written final styled ASS to {final_ass_path}")
# Verify file creation
if not os.path.exists(final_ass_path) or os.path.getsize(final_ass_path) == 0:
raise gr.Error(f"Internal error: Failed to write final ASS file to {final_ass_path}")
# --- Burn Subtitles ---
progress(0.7, desc="Burning subtitles into video...")
success, error_msg = run_ffmpeg_with_subtitles(
video_path, final_ass_path, output_path, style_options
)
if not success:
logger.error(f"Subtitle burning failed. Video: {video_path}, ASS: {final_ass_path}")
raise gr.Error(f"FFmpeg failed to burn subtitles: {error_msg}")
progress(1.0, desc="Processing complete!")
logger.info(f"Output video generated: {output_path}")
return output_path, generated_captions_display_text
except Exception as e:
logger.exception(f"Error in process_video_with_captions")
if temp_dir and os.path.exists(temp_dir):
try:
files = os.listdir(temp_dir)
logger.error(f"Files in temp dir {temp_dir} during error: {files}")
except Exception as list_e:
logger.error(f"Could not list temp dir {temp_dir}: {list_e}")
if isinstance(e, gr.Error): raise e
else: raise gr.Error(f"An unexpected error occurred: {str(e)}")
# Function to toggle interactivity
def toggle_captions_input(auto_generate):
"""Toggle the interactivity of the captions input."""
return gr.update(interactive=not auto_generate)
# --- Gradio Interface ---
with gr.Blocks(title="Video Caption Generator") as app:
gr.Markdown("## Video Caption Generator")
gr.Markdown("Upload a video, choose styling, and add captions. Use auto-generation or provide your own SRT/ASS/VTT.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("**Input & Options**")
video_input = gr.Video(label="Upload Video")
auto_caption = gr.Checkbox(label="Auto-generate captions (Overrides below)", value=False)
captions_input = gr.Textbox(
label="Or Enter Captions Manually",
placeholder="1\n00:00:01,000 --> 00:00:05,000\nHello World\n\n2\n...",
lines=8,
interactive=True
)
caption_type = gr.Dropdown(
choices=["srt", "ass", "vtt"],
value="srt",
label="Format (if providing captions manually)"
)
gr.Markdown("**Caption Styling** (Applied to auto-generated or converted ASS)")
with gr.Row():
font_name = gr.Dropdown(
choices=ACCEPTABLE_FONTS,
value=ACCEPTABLE_FONTS[0] if ACCEPTABLE_FONTS else "Arial",
label="Font"
)
font_size = gr.Slider(minimum=10, maximum=60, value=24, step=1, label="Font Size")
with gr.Row():
primary_color = gr.ColorPicker(value="#FFFFFF", label="Text Color")
alignment = gr.Dropdown(
choices=["Bottom Center", "Bottom Left", "Bottom Right"],
value="Bottom Center",
label="Alignment"
)
process_btn = gr.Button("Generate Captioned Video", variant="primary")
with gr.Column(scale=1):
gr.Markdown("**Output**")
video_output = gr.Video(label="Captioned Video")
generated_captions_output = gr.Textbox(
label="Generated Captions (ASS format if auto-generated)",
lines=10,
interactive=False
)
# Link checkbox to captions input interactivity
auto_caption.change(
fn=toggle_captions_input,
inputs=[auto_caption],
outputs=[captions_input]
)
# Define the main processing function call for the button
process_btn.click(
fn=process_video_with_captions,
inputs=[
video_input,
captions_input,
caption_type,
font_name,
font_size,
primary_color,
alignment,
auto_caption
],
outputs=[video_output, generated_captions_output],
# api_name="generate_captions"
)
# Launch the app
if __name__ == "__main__":
app.launch(debug=True, share=False) # Enable debug for local testing |