Spaces:
Running
Running
File size: 7,995 Bytes
15fdcff fdbfd73 15fdcff 1880d31 fdbfd73 ec3f76a 15fdcff ec3f76a 15fdcff ec3f76a 15fdcff fdbfd73 ec3f76a fdbfd73 ec3f76a fdbfd73 15fdcff ec3f76a cca0a5d ec3f76a 15fdcff ec3f76a 15fdcff fdbfd73 15fdcff fdbfd73 15fdcff fdbfd73 15fdcff fdbfd73 15fdcff fdbfd73 15fdcff ec3f76a 15fdcff 8c92c5f 15fdcff ec3f76a 15fdcff ec3f76a 15fdcff ec3f76a 15fdcff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import gradio as gr
import pandas as pd
from dockling_parser import DocumentParser
from dockling_parser.exceptions import ParserError, UnsupportedFormatError
import tempfile
import mimetypes
import traceback
import requests
from urllib.parse import urlparse
TITLE = "π Smart Document Parser"
DESCRIPTION = """
A powerful document parsing application that automatically extracts structured information from various document formats.
Upload a document or provide a URL (PDF, DOCX, TXT, HTML, Markdown) and get structured information automatically.
"""
ARTICLE = """
## π Features
- Multiple Format Support: PDF, DOCX, TXT, HTML, and Markdown
- Support for File Upload and URLs
- Rich Information Extraction
- Smart Processing with Confidence Scoring
- Automatic Format Detection
Made with β€οΈ using Docling and Gradio
"""
ERROR_MESSAGES = {
"no_input": (
"β οΈ No input provided",
"Please upload a document or provide a URL.",
"No sections available",
"No entities available",
"Confidence Score: 0.0"
),
"invalid_url": (
"β οΈ Invalid URL",
"Please provide a valid URL to a document.",
"No sections available",
"No entities available",
"Confidence Score: 0.0"
),
"download_error": (
"β οΈ Failed to download document",
"Could not download the document from the provided URL.",
"No sections available",
"No entities available",
"Confidence Score: 0.0"
),
"unsupported_format": (
"β οΈ Unsupported file format",
"Please provide a file in one of the supported formats: PDF, DOCX, TXT, HTML, or MD.",
"No sections available",
"No entities available",
"Confidence Score: 0.0"
),
"processing_error": (
"β οΈ Error processing document",
"An error occurred while processing the document. Please try again with a different file.",
"No sections available",
"No entities available",
"Confidence Score: 0.0"
)
}
# Initialize the document parser
parser = DocumentParser()
def download_file(url: str) -> str:
"""Download file from URL and save to temporary file"""
try:
# Extract filename from URL
parsed_url = urlparse(url)
filename = os.path.basename(parsed_url.path)
if not filename:
filename = "document.pdf" # Default filename
# Download file
response = requests.get(url, allow_redirects=True)
response.raise_for_status()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(filename)[1]) as tmp_file:
tmp_file.write(response.content)
return tmp_file.name
except Exception as e:
raise Exception(f"Failed to download file: {str(e)}")
def process_input(file_input, url_input):
"""Process either uploaded file or URL input"""
# Check if we have any input
if file_input is None and not url_input:
return ERROR_MESSAGES["no_input"]
temp_file = None
try:
# Handle URL input if provided
if url_input:
try:
temp_file = download_file(url_input)
result = parser.parse(temp_file)
except Exception as e:
return ERROR_MESSAGES["download_error"]
# Handle file upload
else:
result = parser.parse(file_input)
# Prepare the outputs
metadata_df = pd.DataFrame([{
"Property": k,
"Value": str(v)
} for k, v in result.metadata.dict().items()])
# Extract structured content
sections = result.structured_content.get('sections', [])
sections_text = "\n\n".join([f"Section {i+1}:\n{section}" for i, section in enumerate(sections)])
# Format entities if available
entities = result.structured_content.get('entities', {})
entities_text = "\n".join([f"{entity_type}: {', '.join(entities_list)}"
for entity_type, entities_list in entities.items()]) if entities else "No entities detected"
return (
result.content, # Main content
metadata_df, # Metadata as table
sections_text, # Structured sections
entities_text, # Named entities
f"Confidence Score: {result.confidence_score:.2f}" # Confidence score
)
except UnsupportedFormatError as e:
error_msg = f"β οΈ {str(e)}"
return (
error_msg,
pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
"No sections available",
"No entities available",
"Confidence Score: 0.0"
)
except ParserError as e:
error_msg = f"β οΈ {str(e)}"
return (
error_msg,
pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
"No sections available",
"No entities available",
"Confidence Score: 0.0"
)
except Exception as e:
error_msg = f"β οΈ Unexpected error: {str(e)}\n{traceback.format_exc()}"
return (
error_msg,
pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
"No sections available",
"No entities available",
"Confidence Score: 0.0"
)
finally:
# Cleanup temporary file if it was created
if temp_file and os.path.exists(temp_file):
try:
os.unlink(temp_file)
except:
pass
# Create Gradio interface
with gr.Blocks(title=TITLE, theme=gr.themes.Soft()) as iface:
gr.Markdown(f"# {TITLE}")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".txt", ".html", ".md"],
type="filepath"
)
url_input = gr.Textbox(
label="Or Enter Document URL",
placeholder="https://example.com/document.pdf"
)
submit_btn = gr.Button("Process Document", variant="primary")
with gr.Column():
confidence = gr.Textbox(label="Processing Confidence")
with gr.Tabs():
with gr.TabItem("π Content"):
content_output = gr.Textbox(
label="Extracted Content",
lines=10,
max_lines=30
)
with gr.TabItem("π Metadata"):
metadata_output = gr.Dataframe(
label="Document Metadata",
headers=["Property", "Value"]
)
with gr.TabItem("π Sections"):
sections_output = gr.Textbox(
label="Document Sections",
lines=10,
max_lines=30
)
with gr.TabItem("π·οΈ Entities"):
entities_output = gr.Textbox(
label="Named Entities",
lines=5,
max_lines=15
)
# Handle file submission
submit_btn.click(
fn=process_input,
inputs=[file_input, url_input],
outputs=[
content_output,
metadata_output,
sections_output,
entities_output,
confidence
]
)
gr.Markdown("""
### π Supported Formats
- PDF Documents (*.pdf)
- Word Documents (*.docx)
- Text Files (*.txt)
- HTML Files (*.html)
- Markdown Files (*.md)
### π Example URLs
- ArXiv PDFs: https://arxiv.org/pdf/2408.08921.pdf
- Research Papers
- Documentation
""")
gr.Markdown(ARTICLE)
# Launch the app
if __name__ == "__main__":
iface.launch() |