File size: 7,995 Bytes
15fdcff
 
 
 
fdbfd73
15fdcff
1880d31
fdbfd73
ec3f76a
 
15fdcff
 
 
 
ec3f76a
15fdcff
 
 
 
 
 
ec3f76a
15fdcff
 
 
 
 
 
 
fdbfd73
ec3f76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbfd73
 
 
 
 
 
ec3f76a
fdbfd73
 
 
 
 
 
 
 
 
 
 
 
 
15fdcff
 
 
ec3f76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca0a5d
ec3f76a
 
 
 
 
 
 
15fdcff
ec3f76a
 
 
 
 
 
 
 
 
 
15fdcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbfd73
 
 
 
 
 
 
 
 
15fdcff
fdbfd73
15fdcff
fdbfd73
 
15fdcff
 
 
 
 
fdbfd73
15fdcff
fdbfd73
 
15fdcff
 
 
 
ec3f76a
 
 
 
 
 
 
15fdcff
 
 
 
 
 
 
 
 
 
 
8c92c5f
15fdcff
ec3f76a
 
 
 
15fdcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3f76a
 
15fdcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3f76a
 
 
 
 
15fdcff
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import gradio as gr
import pandas as pd
from dockling_parser import DocumentParser
from dockling_parser.exceptions import ParserError, UnsupportedFormatError
import tempfile
import mimetypes
import traceback
import requests
from urllib.parse import urlparse

TITLE = "πŸ“„ Smart Document Parser"
DESCRIPTION = """
A powerful document parsing application that automatically extracts structured information from various document formats.
Upload a document or provide a URL (PDF, DOCX, TXT, HTML, Markdown) and get structured information automatically.
"""

ARTICLE = """
## πŸš€ Features

- Multiple Format Support: PDF, DOCX, TXT, HTML, and Markdown
- Support for File Upload and URLs
- Rich Information Extraction
- Smart Processing with Confidence Scoring
- Automatic Format Detection

Made with ❀️ using Docling and Gradio
"""

ERROR_MESSAGES = {
    "no_input": (
        "⚠️ No input provided",
        "Please upload a document or provide a URL.",
        "No sections available",
        "No entities available",
        "Confidence Score: 0.0"
    ),
    "invalid_url": (
        "⚠️ Invalid URL",
        "Please provide a valid URL to a document.",
        "No sections available",
        "No entities available",
        "Confidence Score: 0.0"
    ),
    "download_error": (
        "⚠️ Failed to download document",
        "Could not download the document from the provided URL.",
        "No sections available",
        "No entities available",
        "Confidence Score: 0.0"
    ),
    "unsupported_format": (
        "⚠️ Unsupported file format",
        "Please provide a file in one of the supported formats: PDF, DOCX, TXT, HTML, or MD.",
        "No sections available",
        "No entities available",
        "Confidence Score: 0.0"
    ),
    "processing_error": (
        "⚠️ Error processing document",
        "An error occurred while processing the document. Please try again with a different file.",
        "No sections available",
        "No entities available",
        "Confidence Score: 0.0"
    )
}

# Initialize the document parser
parser = DocumentParser()

def download_file(url: str) -> str:
    """Download file from URL and save to temporary file"""
    try:
        # Extract filename from URL
        parsed_url = urlparse(url)
        filename = os.path.basename(parsed_url.path)
        if not filename:
            filename = "document.pdf"  # Default filename
        
        # Download file
        response = requests.get(url, allow_redirects=True)
        response.raise_for_status()
        
        # Save to temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(filename)[1]) as tmp_file:
            tmp_file.write(response.content)
            return tmp_file.name
            
    except Exception as e:
        raise Exception(f"Failed to download file: {str(e)}")

def process_input(file_input, url_input):
    """Process either uploaded file or URL input"""
    # Check if we have any input
    if file_input is None and not url_input:
        return ERROR_MESSAGES["no_input"]
    
    temp_file = None
    try:
        # Handle URL input if provided
        if url_input:
            try:
                temp_file = download_file(url_input)
                result = parser.parse(temp_file)
            except Exception as e:
                return ERROR_MESSAGES["download_error"]
        # Handle file upload
        else:
            result = parser.parse(file_input)
        
        # Prepare the outputs
        metadata_df = pd.DataFrame([{
            "Property": k,
            "Value": str(v)
        } for k, v in result.metadata.dict().items()])
        
        # Extract structured content
        sections = result.structured_content.get('sections', [])
        sections_text = "\n\n".join([f"Section {i+1}:\n{section}" for i, section in enumerate(sections)])
        
        # Format entities if available
        entities = result.structured_content.get('entities', {})
        entities_text = "\n".join([f"{entity_type}: {', '.join(entities_list)}" 
                                 for entity_type, entities_list in entities.items()]) if entities else "No entities detected"
        
        return (
            result.content,  # Main content
            metadata_df,     # Metadata as table
            sections_text,   # Structured sections
            entities_text,   # Named entities
            f"Confidence Score: {result.confidence_score:.2f}"  # Confidence score
        )
        
    except UnsupportedFormatError as e:
        error_msg = f"⚠️ {str(e)}"
        return (
            error_msg,
            pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
            "No sections available",
            "No entities available",
            "Confidence Score: 0.0"
        )
    except ParserError as e:
        error_msg = f"⚠️ {str(e)}"
        return (
            error_msg,
            pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
            "No sections available",
            "No entities available",
            "Confidence Score: 0.0"
        )
    except Exception as e:
        error_msg = f"⚠️ Unexpected error: {str(e)}\n{traceback.format_exc()}"
        return (
            error_msg,
            pd.DataFrame([{"Property": "Error", "Value": error_msg}]),
            "No sections available",
            "No entities available",
            "Confidence Score: 0.0"
        )
    finally:
        # Cleanup temporary file if it was created
        if temp_file and os.path.exists(temp_file):
            try:
                os.unlink(temp_file)
            except:
                pass

# Create Gradio interface
with gr.Blocks(title=TITLE, theme=gr.themes.Soft()) as iface:
    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            file_input = gr.File(
                label="Upload Document",
                file_types=[".pdf", ".docx", ".txt", ".html", ".md"],
                type="filepath"
            )
            url_input = gr.Textbox(
                label="Or Enter Document URL",
                placeholder="https://example.com/document.pdf"
            )
            submit_btn = gr.Button("Process Document", variant="primary")
        
        with gr.Column():
            confidence = gr.Textbox(label="Processing Confidence")
    
    with gr.Tabs():
        with gr.TabItem("πŸ“ Content"):
            content_output = gr.Textbox(
                label="Extracted Content",
                lines=10,
                max_lines=30
            )
            
        with gr.TabItem("πŸ“Š Metadata"):
            metadata_output = gr.Dataframe(
                label="Document Metadata",
                headers=["Property", "Value"]
            )
            
        with gr.TabItem("πŸ“‘ Sections"):
            sections_output = gr.Textbox(
                label="Document Sections",
                lines=10,
                max_lines=30
            )
            
        with gr.TabItem("🏷️ Entities"):
            entities_output = gr.Textbox(
                label="Named Entities",
                lines=5,
                max_lines=15
            )
    
    # Handle file submission
    submit_btn.click(
        fn=process_input,
        inputs=[file_input, url_input],
        outputs=[
            content_output,
            metadata_output,
            sections_output,
            entities_output,
            confidence
        ]
    )
    
    gr.Markdown("""
    ### πŸ“Œ Supported Formats
    - PDF Documents (*.pdf)
    - Word Documents (*.docx)
    - Text Files (*.txt)
    - HTML Files (*.html)
    - Markdown Files (*.md)
    
    ### πŸ”— Example URLs
    - ArXiv PDFs: https://arxiv.org/pdf/2408.08921.pdf
    - Research Papers
    - Documentation
    """)
    
    gr.Markdown(ARTICLE)

# Launch the app
if __name__ == "__main__":
    iface.launch()