Spaces:
Runtime error
Runtime error
File size: 1,680 Bytes
e1059d2 02f5719 e1059d2 02f5719 e1059d2 f8578e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import torch
import gradio as gr
import re
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
device='cpu'
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
def predict(image,max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
css = '''
h1#title {
text-align: center;
}
h3#header {
text-align: center;
}
img#overview {
max-width: 800px;
max-height: 600px;
}
img#style-image {
max-width: 1000px;
max-height: 600px;
}
'''
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
output = gr.outputs.Textbox(type="auto",label="Captions")
examples = [f"example{i}.jpg" for i in range(1,7)]
description= "Image captioning application made using transformers"
title = "Image Captioning 🖼️"
interface = gr.Interface(
fn=predict,
inputs = input,
theme="grass",
outputs=output,
examples = examples,
title=title,
description=description,
article = article,
)
interface.launch(debug=True) |