File size: 1,292 Bytes
84c4b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import streamlit as st
import torch
from PIL import Image
from transformers import AutoFeatureExtractor, AutoModelForImageClassification

# ๋ชจ๋ธ ๋ฐ ์„ค์ • ๋กœ๋“œ
@st.cache_resource
def load_model():
    feature_extractor = AutoFeatureExtractor.from_pretrained("xinyu1205/recognize-anything-plus-model")
    model = AutoModelForImageClassification.from_pretrained("xinyu1205/recognize-anything-plus-model")
    model.eval()
    return feature_extractor, model

# ์˜ˆ์ธก ํ•จ์ˆ˜
def predict(image, feature_extractor, model):
    inputs = feature_extractor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    logits = outputs.logits
    # ์ƒ์œ„ 5๊ฐœ ํƒœ๊ทธ ๋ฐ˜ํ™˜
    top_5 = torch.topk(logits, k=5)
    return [model.config.id2label[i.item()] for i in top_5.indices[0]]

# Streamlit ์•ฑ
st.title("RAM++ Image Tagging")

feature_extractor, model = load_model()

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Image', use_column_width=True)

    if st.button('Get Tags'):
        tags = predict(image, feature_extractor, model)
        st.write("Predicted Tags:")
        st.write(", ".join(tags))