Spaces:
Running
Running
File size: 8,334 Bytes
a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 d760fbe a657540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from collections import defaultdict
import traceback
import openai
from openai.error import OpenAIError
from tenacity import retry, stop_after_attempt, wait_random_exponential
import tiktoken
import streamlit as st
import pandas as pd
def generate_prompt(system_prompt, separator, context, question):
user_prompt = ""
if system_prompt:
user_prompt += system_prompt + separator
if context:
user_prompt += context + separator
if question:
user_prompt += question + separator
return user_prompt
def generate_chat_prompt(separator, context, question):
user_prompt = ""
if context:
user_prompt += context + separator
if question:
user_prompt += question + separator
return user_prompt
@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_embeddings(text, embedding_model="text-embedding-ada-002"):
response = openai.Embedding.create(
model=embedding_model,
input=text,
)
embedding_vectors = response["data"][0]["embedding"]
return embedding_vectors
@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_completion(config, user_prompt):
try:
response = openai.Completion.create(
model=config["model_name"],
prompt=user_prompt,
temperature=config["temperature"],
max_tokens=config["max_tokens"],
top_p=config["top_p"],
frequency_penalty=config["frequency_penalty"],
presence_penalty=config["presence_penalty"],
)
answer = response["choices"][0]["text"]
answer = answer.strip()
return answer
except OpenAIError as e:
func_name = traceback.extract_stack()[-1].name
st.error(f"Error in {func_name}:\n{type(e).__name__}=> {str(e)}")
@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_chat_completion(config, system_prompt, question):
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": question},
]
response = openai.ChatCompletion.create(
model=config["model_name"],
messages=messages,
temperature=config["temperature"],
max_tokens=config["max_tokens"],
top_p=config["top_p"],
frequency_penalty=config["frequency_penalty"],
presence_penalty=config["presence_penalty"],
)
answer = response["choices"][0]["message"]["content"]
answer = answer.strip()
return answer
except OpenAIError as e:
func_name = traceback.extract_stack()[-1].name
st.error(f"Error in {func_name}:\n{type(e).__name__}=> {str(e)}")
def context_chunking(context, threshold=512, chunk_overlap_limit=0):
encoding = tiktoken.encoding_for_model("text-embedding-ada-002")
contexts_lst = []
while len(encoding.encode(context)) > threshold:
context_temp = encoding.decode(encoding.encode(context)[:threshold])
contexts_lst.append(context_temp)
context = encoding.decode(
encoding.encode(context)[threshold - chunk_overlap_limit :]
)
if context:
contexts_lst.append(context)
return contexts_lst
def generate_csv_report(file, cols, criteria_dict, counter, config):
try:
df = pd.read_csv(file)
if "Questions" not in df.columns or "Contexts" not in df.columns:
raise ValueError(
"Missing Column Names in .csv file: `Questions` and `Contexts`"
)
final_df = pd.DataFrame(columns=cols)
hyperparameters = f"Temperature: {config['temperature']}\nTop P: {config['top_p']} \
\nMax Tokens: {config['max_tokens']}\nFrequency Penalty: {config['frequency_penalty']} \
\nPresence Penalty: {config['presence_penalty']}"
progress_text = "Generation in progress. Please wait..."
my_bar = st.progress(0, text=progress_text)
for idx, row in df.iterrows():
my_bar.progress((idx + 1) / len(df), text=progress_text)
question = row["Questions"]
context = row["Contexts"]
contexts_lst = context_chunking(context)
system_prompts_list = []
answers_list = []
for num in range(counter):
system_prompt_final = "system_prompt_" + str(num + 1)
system_prompts_list.append(eval(system_prompt_final))
if config["model_name"] in [
"text-davinci-003",
"gpt-3.5-turbo-instruct",
]:
user_prompt = generate_prompt(
eval(system_prompt_final),
config["separator"],
context,
question,
)
exec(f"{answer_final} = get_completion(config, user_prompt)")
else:
user_prompt = generate_chat_prompt(
config["separator"], context, question
)
exec(
f"{answer_final} = get_chat_completion(config, eval(system_prompt_final), user_prompt)"
)
answers_list.append(eval(answer_final))
from metrics import Metrics
metrics = Metrics(question, [context] * counter, answers_list, config)
rouge1, rouge2, rougeL = metrics.rouge_score()
rouge_scores = f"Rouge1: {rouge1}, Rouge2: {rouge2}, RougeL: {rougeL}"
metrics = Metrics(question, [contexts_lst] * counter, answers_list, config)
bleu = metrics.bleu_score()
bleu_scores = f"BLEU Score: {bleu}"
metrics = Metrics(question, [context] * counter, answers_list, config)
bert_f1 = metrics.bert_score()
bert_scores = f"BERT F1 Score: {bert_f1}"
answer_relevancy_scores = []
critique_scores = defaultdict(list)
faithfulness_scores = []
for num in range(counter):
answer_final = "answer_" + str(num + 1)
metrics = Metrics(
question, context, eval(answer_final), config, strictness=3
)
answer_relevancy_score = metrics.answer_relevancy()
answer_relevancy_scores.append(
f"Answer #{str(num+1)}: {answer_relevancy_score}"
)
for criteria_name, criteria_desc in criteria_dict.items():
critique_score = metrics.critique(criteria_desc, strictness=3)
critique_scores[criteria_name].append(
f"Answer #{str(num+1)}: {critique_score}"
)
faithfulness_score = metrics.faithfulness(strictness=3)
faithfulness_scores.append(
f"Answer #{str(num+1)}: {faithfulness_score}"
)
answer_relevancy_scores = ";\n".join(answer_relevancy_scores)
faithfulness_scores = ";\n".join(faithfulness_scores)
critique_scores_lst = []
for criteria_name in criteria_dict.keys():
score = ";\n".join(critique_scores[criteria_name])
critique_scores_lst.append(score)
final_df.loc[len(final_df)] = (
[question, context, config["model_name"], hyperparameters]
+ system_prompts_list
+ answers_list
+ [
rouge_scores,
bleu_scores,
bert_scores,
answer_relevancy_score,
faithfulness_score,
]
+ critique_scores_lst
)
my_bar.empty()
return final_df
except Exception as e:
func_name = traceback.extract_stack()[-1].name
st.error(f"Error in {func_name}: {str(e)}, {traceback.format_exc()}")
|