File size: 6,240 Bytes
09447d8
 
 
 
 
 
 
d808656
09447d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48664e3
09447d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48664e3
09447d8
 
 
 
48664e3
09447d8
 
 
 
 
 
48664e3
09447d8
 
 
 
 
48664e3
09447d8
 
48664e3
09447d8
 
 
 
 
48664e3
09447d8
 
 
 
 
 
 
48664e3
d808656
48664e3
09447d8
 
 
 
d808656
 
 
 
 
 
 
 
 
 
09447d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d808656
09447d8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import numpy as np
import sympy as sp
import seaborn as sns
from matplotlib import pyplot as plt

sns.set_style(style="darkgrid")
sns.set_context(context="notebook", font_scale=0.7)

MAX_NOISE = 20
DEFAULT_NOISE = 6
SLIDE_NOISE_STEP = 2

MAX_POINTS = 100
DEFAULT_POINTS = 20
SLIDE_POINTS_STEP = 5

def generate_equation(process_params):
    process_params = process_params.astype(float).values.tolist()

    # Define symbols
    x = sp.symbols('x')
    coefficients = sp.symbols('a b c d e')

    # Create the polynomial expression
    polynomial_expression = None
    for i, coef in enumerate(reversed(coefficients)):
        polynomial_expression = polynomial_expression + coef * x**i if polynomial_expression else coef * x**i

    # Parameter mapping
    parameters = {coef: value for coef, value in zip(coefficients, process_params[0])}

    # Substitute parameter values into the expression
    polynomial_with_values = polynomial_expression.subs(parameters)
    latex_representation = sp.latex(polynomial_with_values)
    return fr"Underlying process $${latex_representation}$$"


def true_process(x, process_params):
    """The true process we want to model."""
    process_params = process_params.astype(float).values.tolist()
    return (
        process_params[0][0] * (x ** 4)
        + process_params[0][1] * (x ** 3)
        + process_params[0][2] * (x ** 2)
        + process_params[0][3] * x
        + process_params[0][4]
    )


def generate_data(num_points, noise_level, process_params):

    # x is the list of input values
    input_values = np.linspace(-5, 2, num_points)
    input_values_dense = np.linspace(-5, 2, MAX_POINTS)

    # y = f(x) is the underlying process we want to model
    y = [true_process(x, process_params) for x in input_values]
    y_dense = [true_process(x, process_params) for x in input_values_dense]

    # however, we can only observe a noisy version of f(x)
    noise = np.random.normal(0, noise_level, len(input_values))
    y_noisy = y + noise

    return input_values, input_values_dense, y, y_dense, y_noisy

    
def make_plot(
        num_points, noise_level, process_params,
        show_true_process, show_original_points, show_added_noise, show_noisy_points,
    ):

    x, x_dense, y, y_dense, y_noisy = generate_data(num_points, noise_level, process_params)

    fig = plt.figure(dpi=300)
    if show_true_process:
        plt.plot(
            x_dense, y_dense, "-", color="#363A4F",
            label="True Process",
            lw=1.5,
        )
    if show_added_noise:
        plt.vlines(
            x, y, y_noisy, color="#556D9A",
            linestyles="dashed",
            alpha=0.75,
            lw=1,
            label="Added Noise",
        )
    if show_original_points:
        plt.plot(
            x, y, "-o", color="none",
            ms=6,
            markerfacecolor="white",
            markeredgecolor="#556D9A",
            markeredgewidth=1.2,
            label="Original Points",
        )
    if show_noisy_points:
        plt.plot(
            x, y_noisy, "-o", color="none",
            ms=6.5,
            markerfacecolor="#556D9A",
            markeredgecolor="none",
            markeredgewidth=1.5,
            alpha=1,
            label="Noisy Points",
        )

    plt.xlabel("\nx")
    plt.ylabel("y") 
    plt.legend(fontsize=7.5)
    plt.tight_layout()
    plt.show()
    return fig
    
# Force main column to be 100 pixels wide, knowing that the parent is a flex container with column direction 
css = """
.gradio-container {
    width: min(1000px, 50%)!important;
    min-width: 800px;
}
.main-plot {
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            with gr.Row():
                process_params = gr.DataFrame(
                    value=[[0.5, 2, -0.5, -2, 1]],
                    label="Underlying Process Coefficients",
                    type="pandas",
                    column_widths=("2", "1", "1", "1", "1w"),
                    headers=["x ** 4", "x ** 3", "x ** 2", "x", "1"],
                    interactive=True
                )
            equation = gr.Markdown()

            with gr.Row():
                with gr.Column():
                    num_points = gr.Slider(
                        minimum=5,
                        maximum=MAX_POINTS,
                        value=DEFAULT_POINTS,
                        step=SLIDE_POINTS_STEP,
                        label="Number of Points"
                    )
                with gr.Column():
                    noise_level = gr.Slider(
                        minimum=0,
                        maximum=MAX_NOISE,
                        value=DEFAULT_NOISE,
                        step=SLIDE_NOISE_STEP,
                        label="Noise Level"
                    )

            show_params = []
            with gr.Row():
                with gr.Column():
                    show_params.append(gr.Checkbox(label="Show Underlying Process", value=True))
                    show_params.append(gr.Checkbox(label="Show Original Points", value=True))
                with gr.Column():
                    show_params.append(gr.Checkbox(label="Show Added Noise", value=True))
                    show_params.append(gr.Checkbox(label="Show Noisy Points", value=True))

            scatter_plot = gr.Plot(elem_classes=["main-plot"])

    num_points.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
    noise_level.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
    process_params.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
    process_params.change(fn=generate_equation, inputs=[process_params], outputs=equation)
    for component in show_params:
        component.change(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
    demo.load(fn=make_plot, inputs=[num_points, noise_level, process_params, *show_params], outputs=scatter_plot)
    demo.load(fn=generate_equation, inputs=[process_params], outputs=equation)

if __name__ == "__main__":
    demo.launch()