File size: 7,039 Bytes
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import PIL
import torch
from daam import trace
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from diffusers.utils.torch_utils import randn_tensor

import matplotlib.pyplot as plt

from concept_attention.segmentation import SegmentationAbstractClass

def retrieve_latents(encoder_output, generator, sample_mode="sample"):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")

class DAAMStableDiffusion2SegmentationModel(SegmentationAbstractClass):

    def __init__(self, device='cuda:3'):
        # Load the SDXL Pipeline
        model_id = 'stabilityai/stable-diffusion-2-base'
        self.pipeline = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True)
        self.pipeline = self.pipeline.to(device)
        self.device = device

    def _encode_image(self, image: PIL.Image.Image, timestep, height=512, width=512):
        # Preprocess the image
        init_image = self.pipeline.image_processor.preprocess(
            image, 
            height=height, 
            width=width, 
        )
        init_image = init_image.to(dtype=torch.float32) # Make sure float 32 cause otherwise vae encoder doesnt work
        init_image = init_image.to(device=self.device)
        init_latents = retrieve_latents(self.pipeline.vae.encode(init_image), generator=None)
        init_latents = self.pipeline.vae.config.scaling_factor * init_latents
        init_latents = torch.cat([init_latents], dim=0)
        shape = init_latents.shape
        # Add noise
        noise = randn_tensor(shape, generator=None, device=self.device, dtype=self.pipeline.dtype)
        init_latents = self.pipeline.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    @torch.no_grad()
    def _model_forward_pass(
        self, 
        image, 
        prompt,
        timestep=49,
        guidance_scale=1.0,
        num_inference_steps=50,
        height=512,
        width=512,
        dtype=torch.float32,
        batch_size=1,
        generator=None,
    ):
        # Set up timesteps
        self.pipeline.scheduler.set_timesteps(num_inference_steps)
        timestep = self.pipeline.scheduler.timesteps[timestep] # .to(device=device, dtype=dtype)
        # # Encode the image
        # self.pipeline(
        #     image, 
        #     device=self.device,
        #     num_images_per_prompt=1,
        #     output_hidden_states=None,
        # )
        ########################## Prepare latents ##########################
        image_latents = self._encode_image(
            image,
            timestep
        )
        # Add noise at the appropriate timescale
        # noise = randn_tensor(image_latents.shape, generator=generator, device=torch.device(self.device), dtype=dtype)
        # noisy_latents = self.pipeline.scheduler.add_noise(image_latents, noise, timestep.unsqueeze(0))
        # noisy_latents = self.pipeline.scheduler.scale_model_input(noisy_latents, timestep)
        # noisy_latents = noisy_latents.to(device=self.device, dtype=dtype)
        # Encode the prompt
        prompt_embeds, negative_prompt_embeds = self.pipeline.encode_prompt(
            prompt,
            self.device,
            1,
            True,
            None,
            # prompt_embeds=prompt_embeds,
            # negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=0.0,
            # clip_skip=self.pipeline.clip_skip,
        )
        ########################## Run forward pass ##########################
        noise_pred = self.pipeline.unet(
            image_latents,
            timestep,
            encoder_hidden_states=prompt_embeds,
            timestep_cond=None,
            cross_attention_kwargs=None,
            added_cond_kwargs=None,
            return_dict=False,
        )[0]
        ########################## Get and save predicted image ##########################
        # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
        # do_denormalize = [True] * image.shape[0]
        # image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
        # # Manually do the logic for the scheduler to get the original prediction
        # s_churn = 0.0
        # s_tmin = 0.0
        # s_tmax = float("inf")
        # s_noise = 1.0
        # # Upcast to avoid precision issues when computing prev_sample
        # sample = noisy_latents.to(torch.float32)
        # sigma = self.pipeline.scheduler.sigmas[self.pipeline.scheduler.index_for_timestep(timestep)]
        # gamma = min(s_churn / (len(self.pipeline.scheduler.sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
        # noise = randn_tensor(
        #     noise_pred.shape, dtype=noise_pred.dtype, device=noise_pred.device, generator=generator
        # )
        # eps = noise * s_noise
        # sigma_hat = sigma * (gamma + 1)
        # if gamma > 0:
        #     sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
        # pred_original_sample = sample - sigma_hat * noise_pred
        # # For testing purposes get the predicted original latents and generate the image for it to verify that the image was encoded properly. 
        # image = self.pipeline.vae.decode(pred_original_sample / self.pipeline.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
        # image = self.pipeline.image_processor.postprocess(image, output_type="pil", do_denormalize=[True for _ in range(batch_size)])
        return None

    def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
        # Cocnat the concepts into the prompt
        modified_caption = caption + ", ".join([f"a {concept}" for concept in concepts])
        # Run the forward pass with daam trace wrapper
        concept_heatmaps = []
        with trace(self.pipeline) as tc:
            _ = self._model_forward_pass(
                image, 
                caption,
                timestep=49,
                guidance_scale=7.0,
                num_inference_steps=50,
                height=512,
                width=512,
                dtype=torch.float32,
                batch_size=1,
            )

            heat_map = tc.compute_global_heat_map(prompt=modified_caption)
            # For each concept make a heatmap
            for concept in concepts:
                concept_heat_map = heat_map.compute_word_heat_map(concept).heatmap
                concept_heatmaps.append(concept_heat_map)

        concept_heatmaps = torch.stack(concept_heatmaps, dim=0)

        return concept_heatmaps, None