File size: 1,996 Bytes
eca6215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from transformers import TextStreamer

def prepare_inference_inputs(tokenizer, template, instruction, input_text, eos_token, device="cuda"):
    """

    Prepares the inputs for inference by formatting the prompt and tokenizing it.



    Args:

    - tokenizer: The tokenizer used for tokenization.

    - template: The template string for the prompt format.

    - instruction: The instruction to be included in the prompt.

    - input_text: The input to be included in the prompt.

    - eos_token: The end of sequence token.

    - device: The device for the model ('cuda' or 'cpu').



    Returns:

    - Tokenized inputs ready for inference.

    """
    prompt = template.format(instruction, input_text, "") + eos_token
    return tokenizer([prompt], return_tensors="pt").to(device)

def generate_responses(model, inputs, tokenizer, max_new_tokens=64):
    """

    Generates responses from the model based on the provided inputs.



    Args:

    - model: The pre-trained model for generation.

    - inputs: The tokenized inputs to generate responses.

    - tokenizer: The tokenizer used to decode the output.

    - max_new_tokens: The maximum number of tokens to generate.



    Returns:

    - Decoded responses from the model.

    """
    outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, use_cache=True)
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)

def stream_responses(model, inputs, tokenizer, max_new_tokens=128):
    """

    Streams the model's response using a text streamer.



    Args:

    - model: The pre-trained model for generation.

    - inputs: The tokenized inputs to generate responses.

    - tokenizer: The tokenizer used to decode the output.

    - max_new_tokens: The maximum number of tokens to generate.



    Returns:

    - Streams the output directly.

    """
    text_streamer = TextStreamer(tokenizer)
    model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens)