File size: 2,220 Bytes
d347764
 
 
 
9307dab
d347764
 
 
 
 
 
 
 
bfd1577
 
d347764
73eab05
 
d347764
 
 
 
bfd1577
 
d347764
 
 
c9dc5f3
1864517
 
 
d347764
 
 
 
 
1864517
bfd1577
d347764
 
f805e49
 
bfd1577
 
 
f805e49
c737803
 
 
d347764
bcd35fa
d347764
f805e49
 
d347764
c737803
 
 
bcd35fa
c737803
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import VitsModel, VitsTokenizer

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")


model = VitsModel.from_pretrained('facebook/mms-tts-rus').to(device)
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-rus')



def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
    return translator(outputs['text'])[0]['translation_text']


def synthesise(text):
    inputs = tokenizer(text=text, return_tensors="pt")
    with torch.no_grad():
        speech = model(**inputs).waveform
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech[0]


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()