Spaces:
Build error
Build error
File size: 2,150 Bytes
7009660 e84bd04 7009660 defb879 7009660 fbb697c 7009660 fbb697c 0cd40c7 fbb697c d706fb6 fbb697c 0cd40c7 8d717c1 fbb697c 0cd40c7 fbb697c 1f84a9a fbb697c aeb550e 6f8476a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import streamlit as st
import load_model
import utils as ut
import os
persist_directory = load_model.persist_directory
st.title('myRetrievalGPT')
st.header('An GPT Retrieval example brought to you by Heiko Wagner')
st.markdown('*Let $\phi$ be a word embedding mapping $W$ → $\mathbb{R}^n$ where $W$ is the word space and $\mathbb{R}^n$ is an $n$-dimensional vector space then: $\phi(king)-\phi(man)+\phi(woman)=\phi(queen)$.* ')
agree = st.checkbox('Load new Documents')
if agree:
ut.load_files()
else:
import torch
torch.cuda.empty_cache()
model_type = st.selectbox(
'Select the Documents to be used to answer your question',
('OpenAI', 'decapoda-research/llama-7b-hf (gpu+cpu)', 'llama-7b 4bit (cpu only)',) )
if model_type=='OpenAI':
if 'openai_key' not in st.session_state:
openai_key= st.text_area('OpenAI Key:', '')
if len(openai_key)>0:
st.session_state['openai_key'] = openai_key
os.environ["OPENAI_API_KEY"] = openai_key
else:
os.environ["OPENAI_API_KEY"] = st.session_state.openai_key
llm= load_model.load_openai_model()
elif model_type=='decapoda-research/llama-7b-hf (gpu+cpu)':
# Add more models here
llm = load_model.load_gpu_model("decapoda-research/llama-7b-hf")
else:
llm = load_model.load_cpu_model()
collections = ut.retrieve_collections()
option = st.selectbox(
'Select the Documents to be used to answer your question',
collections )
st.write('You selected:', option['name'])
chain = load_model.create_chain(llm, collection=option['name'], model_name=option['model_name'], metadata= option['metadata'])
query = st.text_area('Ask a question:', 'Hallo how are you today?')
result = chain({"query": query + " Add a Score of the propability that your answer is correct to your answer"})
ut.format_result_set(result)
#from langchain.chains import ConversationChain
#from langchain.memory import ConversationBufferMemory
#conversation = ConversationChain(
# llm=chat,
# memory=ConversationBufferMemory()
#)
|