File size: 12,358 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
partially adopted from
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
and
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
and
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py

thanks!
"""

import math
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange, repeat


def make_beta_schedule(
    schedule,
    n_timestep,
    linear_start=1e-4,
    linear_end=2e-2,
):
    if schedule == "linear":
        betas = (
            torch.linspace(
                linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
            )
            ** 2
        )
    return betas.numpy()


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def mixed_checkpoint(func, inputs: dict, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function
    borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that
    it also works with non-tensor inputs
    :param func: the function to evaluate.
    :param inputs: the argument dictionary to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)]
        tensor_inputs = [
            inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor)
        ]
        non_tensor_keys = [
            key for key in inputs if not isinstance(inputs[key], torch.Tensor)
        ]
        non_tensor_inputs = [
            inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor)
        ]
        args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params)
        return MixedCheckpointFunction.apply(
            func,
            len(tensor_inputs),
            len(non_tensor_inputs),
            tensor_keys,
            non_tensor_keys,
            *args,
        )
    else:
        return func(**inputs)


class MixedCheckpointFunction(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        run_function,
        length_tensors,
        length_non_tensors,
        tensor_keys,
        non_tensor_keys,
        *args,
    ):
        ctx.end_tensors = length_tensors
        ctx.end_non_tensors = length_tensors + length_non_tensors
        ctx.gpu_autocast_kwargs = {
            "enabled": torch.is_autocast_enabled(),
            "dtype": torch.get_autocast_gpu_dtype(),
            "cache_enabled": torch.is_autocast_cache_enabled(),
        }
        assert (
            len(tensor_keys) == length_tensors
            and len(non_tensor_keys) == length_non_tensors
        )

        ctx.input_tensors = {
            key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors]))
        }
        ctx.input_non_tensors = {
            key: val
            for (key, val) in zip(
                non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors])
            )
        }
        ctx.run_function = run_function
        ctx.input_params = list(args[ctx.end_non_tensors :])

        with torch.no_grad():
            output_tensors = ctx.run_function(
                **ctx.input_tensors, **ctx.input_non_tensors
            )
        return output_tensors

    @staticmethod
    def backward(ctx, *output_grads):
        # additional_args = {key: ctx.input_tensors[key] for key in ctx.input_tensors if not isinstance(ctx.input_tensors[key],torch.Tensor)}
        ctx.input_tensors = {
            key: ctx.input_tensors[key].detach().requires_grad_(True)
            for key in ctx.input_tensors
        }

        with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
            # Fixes a bug where the first op in run_function modifies the
            # Tensor storage in place, which is not allowed for detach()'d
            # Tensors.
            shallow_copies = {
                key: ctx.input_tensors[key].view_as(ctx.input_tensors[key])
                for key in ctx.input_tensors
            }
            # shallow_copies.update(additional_args)
            output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors)
        input_grads = torch.autograd.grad(
            output_tensors,
            list(ctx.input_tensors.values()) + ctx.input_params,
            output_grads,
            allow_unused=True,
        )
        del ctx.input_tensors
        del ctx.input_params
        del output_tensors
        return (
            (None, None, None, None, None)
            + input_grads[: ctx.end_tensors]
            + (None,) * (ctx.end_non_tensors - ctx.end_tensors)
            + input_grads[ctx.end_tensors :]
        )


def checkpoint(func, inputs, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass.
    :param func: the function to evaluate.
    :param inputs: the argument sequence to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        args = tuple(inputs) + tuple(params)
        return CheckpointFunction.apply(func, len(inputs), *args)
    else:
        return func(*inputs)


class CheckpointFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, run_function, length, *args):
        ctx.run_function = run_function
        ctx.input_tensors = list(args[:length])
        ctx.input_params = list(args[length:])
        ctx.gpu_autocast_kwargs = {
            "enabled": torch.is_autocast_enabled(),
            "dtype": torch.get_autocast_gpu_dtype(),
            "cache_enabled": torch.is_autocast_cache_enabled(),
        }
        with torch.no_grad():
            output_tensors = ctx.run_function(*ctx.input_tensors)
        return output_tensors

    @staticmethod
    def backward(ctx, *output_grads):
        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
        with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
            # Fixes a bug where the first op in run_function modifies the
            # Tensor storage in place, which is not allowed for detach()'d
            # Tensors.
            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
            output_tensors = ctx.run_function(*shallow_copies)
        input_grads = torch.autograd.grad(
            output_tensors,
            ctx.input_tensors + ctx.input_params,
            output_grads,
            allow_unused=True,
        )
        del ctx.input_tensors
        del ctx.input_params
        del output_tensors
        return (None, None) + input_grads


def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    if not repeat_only:
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period)
            * torch.arange(start=0, end=half, dtype=torch.float32)
            / half
        ).to(device=timesteps.device)
        args = timesteps[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
            )
    else:
        embedding = repeat(timesteps, "b -> b d", d=dim)
    return embedding


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def scale_module(module, scale):
    """
    Scale the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().mul_(scale)
    return module


def mean_flat(tensor):
    """
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def normalization(channels):
    """
    Make a standard normalization layer.
    :param channels: number of input channels.
    :return: an nn.Module for normalization.
    """
    return GroupNorm32(32, channels)


# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


class GroupNorm32(nn.GroupNorm):
    def forward(self, x):
        return super().forward(x.float()).type(x.dtype)


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


class AlphaBlender(nn.Module):
    strategies = ["learned", "fixed", "learned_with_images"]

    def __init__(
        self,
        alpha: float,
        merge_strategy: str = "learned_with_images",
        rearrange_pattern: str = "b t -> (b t) 1 1",
    ):
        super().__init__()
        self.merge_strategy = merge_strategy
        self.rearrange_pattern = rearrange_pattern

        assert (
            merge_strategy in self.strategies
        ), f"merge_strategy needs to be in {self.strategies}"

        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif (
            self.merge_strategy == "learned"
            or self.merge_strategy == "learned_with_images"
        ):
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor:
        if self.merge_strategy == "fixed":
            alpha = self.mix_factor
        elif self.merge_strategy == "learned":
            alpha = torch.sigmoid(self.mix_factor)
        elif self.merge_strategy == "learned_with_images":
            assert image_only_indicator is not None, "need image_only_indicator ..."
            alpha = torch.where(
                image_only_indicator.bool(),
                torch.ones(1, 1, device=image_only_indicator.device),
                rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"),
            )
            alpha = rearrange(alpha, self.rearrange_pattern)
        else:
            raise NotImplementedError
        return alpha

    def forward(
        self,
        x_spatial: torch.Tensor,
        x_temporal: torch.Tensor,
        image_only_indicator: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        alpha = self.get_alpha(image_only_indicator)
        x = (
            alpha.to(x_spatial.dtype) * x_spatial
            + (1.0 - alpha).to(x_spatial.dtype) * x_temporal
        )
        return x