File size: 19,231 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_efficient_distloss import flatten_eff_distloss

import pytorch_lightning as pl
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_debug

import models
from models.utils import cleanup
from models.ray_utils import get_rays
import systems
from systems.base import BaseSystem
from systems.criterions import PSNR, binary_cross_entropy

import pdb


def ranking_loss(error, penalize_ratio=0.7, extra_weights=None, type="mean"):
    error, indices = torch.sort(error)
    # only sum relatively small errors
    s_error = torch.index_select(
        error, 0, index=indices[: int(penalize_ratio * indices.shape[0])]
    )
    if extra_weights is not None:
        weights = torch.index_select(
            extra_weights, 0, index=indices[: int(penalize_ratio * indices.shape[0])]
        )
        s_error = s_error * weights

    if type == "mean":
        return torch.mean(s_error)
    elif type == "sum":
        return torch.sum(s_error)


@systems.register("pinhole-neus-system")
class PinholeNeuSSystem(BaseSystem):
    """
    Two ways to print to console:
    1. self.print: correctly handle progress bar
    2. rank_zero_info: use the logging module
    """

    def prepare(self):
        self.criterions = {"psnr": PSNR()}
        self.train_num_samples = self.config.model.train_num_rays * (
            self.config.model.num_samples_per_ray
            + self.config.model.get("num_samples_per_ray_bg", 0)
        )
        self.train_num_rays = self.config.model.train_num_rays
        self.cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)

    def forward(self, batch):
        return self.model(batch["rays"])

    def preprocess_data(self, batch, stage):
        if "index" in batch:  # validation / testing
            index = batch["index"]
        else:
            if self.config.model.batch_image_sampling:
                index = torch.randint(
                    0,
                    len(self.dataset.all_images),
                    size=(self.train_num_rays,),
                    device=self.dataset.all_images.device,
                )
            else:
                index = torch.randint(
                    0,
                    len(self.dataset.all_images),
                    size=(1,),
                    device=self.dataset.all_images.device,
                )
        if stage in ["train"]:
            c2w = self.dataset.all_c2w[index]
            x = torch.randint(
                0,
                self.dataset.w,
                size=(self.train_num_rays,),
                device=self.dataset.all_images.device,
            )
            y = torch.randint(
                0,
                self.dataset.h,
                size=(self.train_num_rays,),
                device=self.dataset.all_images.device,
            )
            if self.dataset.directions.ndim == 3:  # (H, W, 3)
                directions = self.dataset.directions[y, x]
                # origins = self.dataset.origins[y, x]
            elif self.dataset.directions.ndim == 4:  # (N, H, W, 3)
                directions = self.dataset.directions[index, y, x]
                # origins = self.dataset.origins[index, y, x]
            rays_o, rays_d = get_rays(directions, c2w)
            rgb = (
                self.dataset.all_images[index, y, x]
                .view(-1, self.dataset.all_images.shape[-1])
                .to(self.rank)
            )
            normal = (
                self.dataset.all_normals_world[index, y, x]
                .view(-1, self.dataset.all_normals_world.shape[-1])
                .to(self.rank)
            )
            fg_mask = self.dataset.all_fg_masks[index, y, x].view(-1).to(self.rank)
            rgb_mask = self.dataset.all_rgb_masks[index, y, x].view(-1).to(self.rank)
            view_weights = self.dataset.view_weights[index, y, x].view(-1).to(self.rank)
        else:
            c2w = self.dataset.all_c2w[index][0]
            if self.dataset.directions.ndim == 3:  # (H, W, 3)
                directions = self.dataset.directions
                # origins = self.dataset.origins
            elif self.dataset.directions.ndim == 4:  # (N, H, W, 3)
                directions = self.dataset.directions[index][0]
                # origins = self.dataset.origins[index][0]
            rays_o, rays_d = get_rays(directions, c2w)
            rgb = (
                self.dataset.all_images[index]
                .view(-1, self.dataset.all_images.shape[-1])
                .to(self.rank)
            )
            normal = (
                self.dataset.all_normals_world[index]
                .view(-1, self.dataset.all_images.shape[-1])
                .to(self.rank)
            )
            fg_mask = self.dataset.all_fg_masks[index].view(-1).to(self.rank)
            rgb_mask = self.dataset.all_rgb_masks[index].view(-1).to(self.rank)
            view_weights = None

        cosines = self.cos(rays_d, normal)
        rays = torch.cat([rays_o, F.normalize(rays_d, p=2, dim=-1)], dim=-1)

        if stage in ["train"]:
            if self.config.model.background_color == "white":
                self.model.background_color = torch.ones(
                    (3,), dtype=torch.float32, device=self.rank
                )
            elif self.config.model.background_color == "black":
                self.model.background_color = torch.zeros(
                    (3,), dtype=torch.float32, device=self.rank
                )
            elif self.config.model.background_color == "random":
                self.model.background_color = torch.rand(
                    (3,), dtype=torch.float32, device=self.rank
                )
            else:
                raise NotImplementedError
        else:
            self.model.background_color = torch.ones(
                (3,), dtype=torch.float32, device=self.rank
            )

        if self.dataset.apply_mask:
            rgb = rgb * fg_mask[..., None] + self.model.background_color * (
                1 - fg_mask[..., None]
            )

        batch.update(
            {
                "rays": rays,
                "rgb": rgb,
                "normal": normal,
                "fg_mask": fg_mask,
                "rgb_mask": rgb_mask,
                "cosines": cosines,
                "view_weights": view_weights,
            }
        )

    def training_step(self, batch, batch_idx):
        out = self(batch)

        cosines = batch["cosines"]
        fg_mask = batch["fg_mask"]
        rgb_mask = batch["rgb_mask"]
        view_weights = batch["view_weights"]

        cosines[cosines > -0.1] = 0
        mask = (fg_mask > 0) & (cosines < -0.1)
        rgb_mask = out["rays_valid_full"][..., 0] & (rgb_mask > 0)

        grad_cosines = self.cos(batch["rays"][..., 3:], out["comp_normal"]).detach()
        # grad_cosines = cosines

        loss = 0.0

        # update train_num_rays
        if self.config.model.dynamic_ray_sampling:
            train_num_rays = int(
                self.train_num_rays
                * (self.train_num_samples / out["num_samples_full"].sum().item())
            )
            self.train_num_rays = min(
                int(self.train_num_rays * 0.9 + train_num_rays * 0.1),
                self.config.model.max_train_num_rays,
            )

        erros_rgb_mse = F.mse_loss(
            out["comp_rgb_full"][rgb_mask], batch["rgb"][rgb_mask], reduction="none"
        )
        # erros_rgb_mse = erros_rgb_mse * torch.exp(grad_cosines.abs())[:, None][rgb_mask] / torch.exp(grad_cosines.abs()[rgb_mask]).sum()
        # loss_rgb_mse = ranking_loss(erros_rgb_mse.sum(dim=1), penalize_ratio=0.7, type='sum')
        loss_rgb_mse = ranking_loss(
            erros_rgb_mse.sum(dim=1), penalize_ratio=0.7, type="mean"
        )
        self.log("train/loss_rgb_mse", loss_rgb_mse, prog_bar=True, rank_zero_only=True)
        loss += loss_rgb_mse * self.C(self.config.system.loss.lambda_rgb_mse)

        loss_rgb_l1 = F.l1_loss(
            out["comp_rgb_full"][rgb_mask], batch["rgb"][rgb_mask], reduction="none"
        )
        loss_rgb_l1 = ranking_loss(
            loss_rgb_l1.sum(dim=1),
            extra_weights=view_weights[rgb_mask],
            penalize_ratio=0.8,
        )
        self.log("train/loss_rgb", loss_rgb_l1)
        loss += loss_rgb_l1 * self.C(self.config.system.loss.lambda_rgb_l1)

        normal_errors = 1 - F.cosine_similarity(
            out["comp_normal"], batch["normal"], dim=1
        )
        # normal_errors = normal_errors * cosines.abs() / cosines.abs().sum()
        normal_errors = (
            normal_errors * torch.exp(cosines.abs()) / torch.exp(cosines.abs()).sum()
        )
        loss_normal = ranking_loss(
            normal_errors[mask],
            penalize_ratio=0.8,
            #    extra_weights=view_weights[mask],
            type="sum",
        )
        self.log("train/loss_normal", loss_normal, prog_bar=True, rank_zero_only=True)
        loss += loss_normal * self.C(self.config.system.loss.lambda_normal)

        loss_eikonal = (
            (torch.linalg.norm(out["sdf_grad_samples"], ord=2, dim=-1) - 1.0) ** 2
        ).mean()
        self.log("train/loss_eikonal", loss_eikonal, prog_bar=True, rank_zero_only=True)
        loss += loss_eikonal * self.C(self.config.system.loss.lambda_eikonal)

        opacity = torch.clamp(out["opacity"].squeeze(-1), 1.0e-3, 1.0 - 1.0e-3)
        loss_mask = binary_cross_entropy(
            opacity, batch["fg_mask"].float(), reduction="none"
        )
        loss_mask = ranking_loss(
            loss_mask, penalize_ratio=0.9, extra_weights=view_weights
        )
        self.log("train/loss_mask", loss_mask, prog_bar=True, rank_zero_only=True)
        loss += loss_mask * (
            self.C(self.config.system.loss.lambda_mask)
            if self.dataset.has_mask
            else 0.0
        )

        loss_opaque = binary_cross_entropy(opacity, opacity)
        self.log("train/loss_opaque", loss_opaque)
        loss += loss_opaque * self.C(self.config.system.loss.lambda_opaque)

        loss_sparsity = torch.exp(
            -self.config.system.loss.sparsity_scale * out["random_sdf"].abs()
        ).mean()
        self.log(
            "train/loss_sparsity", loss_sparsity, prog_bar=True, rank_zero_only=True
        )
        loss += loss_sparsity * self.C(self.config.system.loss.lambda_sparsity)

        if self.C(self.config.system.loss.lambda_curvature) > 0:
            assert (
                "sdf_laplace_samples" in out
            ), "Need geometry.grad_type='finite_difference' to get SDF Laplace samples"
            loss_curvature = out["sdf_laplace_samples"].abs().mean()
            self.log("train/loss_curvature", loss_curvature)
            loss += loss_curvature * self.C(self.config.system.loss.lambda_curvature)

        # distortion loss proposed in MipNeRF360
        # an efficient implementation from https://github.com/sunset1995/torch_efficient_distloss
        if self.C(self.config.system.loss.lambda_distortion) > 0:
            loss_distortion = flatten_eff_distloss(
                out["weights"], out["points"], out["intervals"], out["ray_indices"]
            )
            self.log("train/loss_distortion", loss_distortion)
            loss += loss_distortion * self.C(self.config.system.loss.lambda_distortion)

        if (
            self.config.model.learned_background
            and self.C(self.config.system.loss.lambda_distortion_bg) > 0
        ):
            loss_distortion_bg = flatten_eff_distloss(
                out["weights_bg"],
                out["points_bg"],
                out["intervals_bg"],
                out["ray_indices_bg"],
            )
            self.log("train/loss_distortion_bg", loss_distortion_bg)
            loss += loss_distortion_bg * self.C(
                self.config.system.loss.lambda_distortion_bg
            )

        if self.C(self.config.system.loss.lambda_3d_normal_smooth) > 0:
            if "random_sdf_grad" not in out:
                raise ValueError(
                    "random_sdf_grad is required for normal smooth loss, no normal is found in the output."
                )
            if "normal_perturb" not in out:
                raise ValueError(
                    "normal_perturb is required for normal smooth loss, no normal_perturb is found in the output."
                )
            normals_3d = out["random_sdf_grad"]
            normals_perturb_3d = out["normal_perturb"]
            loss_3d_normal_smooth = (normals_3d - normals_perturb_3d).abs().mean()
            self.log(
                "train/loss_3d_normal_smooth", loss_3d_normal_smooth, prog_bar=True
            )

            loss += loss_3d_normal_smooth * self.C(
                self.config.system.loss.lambda_3d_normal_smooth
            )

        losses_model_reg = self.model.regularizations(out)
        for name, value in losses_model_reg.items():
            self.log(f"train/loss_{name}", value)
            loss_ = value * self.C(self.config.system.loss[f"lambda_{name}"])
            loss += loss_

        self.log("train/inv_s", out["inv_s"], prog_bar=True)

        for name, value in self.config.system.loss.items():
            if name.startswith("lambda"):
                self.log(f"train_params/{name}", self.C(value))

        self.log("train/num_rays", float(self.train_num_rays), prog_bar=True)

        return {"loss": loss}

    """
    # aggregate outputs from different devices (DP)
    def training_step_end(self, out):
        pass
    """

    """
    # aggregate outputs from different iterations
    def training_epoch_end(self, out):
        pass
    """

    def validation_step(self, batch, batch_idx):
        out = self(batch)
        psnr = self.criterions["psnr"](
            out["comp_rgb_full"].to(batch["rgb"]), batch["rgb"]
        )
        W, H = self.dataset.img_wh
        self.save_image_grid(
            f"it{self.global_step}-{batch['index'][0].item()}.png",
            [
                {
                    "type": "rgb",
                    "img": batch["rgb"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC"},
                },
                {
                    "type": "rgb",
                    "img": out["comp_rgb_full"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC"},
                },
            ]
            + (
                [
                    {
                        "type": "rgb",
                        "img": out["comp_rgb_bg"].view(H, W, 3),
                        "kwargs": {"data_format": "HWC"},
                    },
                    {
                        "type": "rgb",
                        "img": out["comp_rgb"].view(H, W, 3),
                        "kwargs": {"data_format": "HWC"},
                    },
                ]
                if self.config.model.learned_background
                else []
            )
            + [
                {"type": "grayscale", "img": out["depth"].view(H, W), "kwargs": {}},
                {
                    "type": "rgb",
                    "img": out["comp_normal"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC", "data_range": (-1, 1)},
                },
            ],
        )
        return {"psnr": psnr, "index": batch["index"]}

    """
    # aggregate outputs from different devices when using DP
    def validation_step_end(self, out):
        pass
    """

    def validation_epoch_end(self, out):
        out = self.all_gather(out)
        if self.trainer.is_global_zero:
            out_set = {}
            for step_out in out:
                # DP
                if step_out["index"].ndim == 1:
                    out_set[step_out["index"].item()] = {"psnr": step_out["psnr"]}
                # DDP
                else:
                    for oi, index in enumerate(step_out["index"]):
                        out_set[index[0].item()] = {"psnr": step_out["psnr"][oi]}
            psnr = torch.mean(torch.stack([o["psnr"] for o in out_set.values()]))
            self.log("val/psnr", psnr, prog_bar=True, rank_zero_only=True)
        self.export()

    def test_step(self, batch, batch_idx):
        out = self(batch)
        psnr = self.criterions["psnr"](
            out["comp_rgb_full"].to(batch["rgb"]), batch["rgb"]
        )
        W, H = self.dataset.img_wh
        self.save_image_grid(
            f"it{self.global_step}-test/{batch['index'][0].item()}.png",
            [
                {
                    "type": "rgb",
                    "img": batch["rgb"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC"},
                },
                {
                    "type": "rgb",
                    "img": out["comp_rgb_full"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC"},
                },
            ]
            + (
                [
                    {
                        "type": "rgb",
                        "img": out["comp_rgb_bg"].view(H, W, 3),
                        "kwargs": {"data_format": "HWC"},
                    },
                    {
                        "type": "rgb",
                        "img": out["comp_rgb"].view(H, W, 3),
                        "kwargs": {"data_format": "HWC"},
                    },
                ]
                if self.config.model.learned_background
                else []
            )
            + [
                {"type": "grayscale", "img": out["depth"].view(H, W), "kwargs": {}},
                {
                    "type": "rgb",
                    "img": out["comp_normal"].view(H, W, 3),
                    "kwargs": {"data_format": "HWC", "data_range": (-1, 1)},
                },
            ],
        )
        return {"psnr": psnr, "index": batch["index"]}

    def test_epoch_end(self, out):
        """
        Synchronize devices.
        Generate image sequence using test outputs.
        """
        out = self.all_gather(out)
        if self.trainer.is_global_zero:
            out_set = {}
            for step_out in out:
                # DP
                if step_out["index"].ndim == 1:
                    out_set[step_out["index"].item()] = {"psnr": step_out["psnr"]}
                # DDP
                else:
                    for oi, index in enumerate(step_out["index"]):
                        out_set[index[0].item()] = {"psnr": step_out["psnr"][oi]}
            psnr = torch.mean(torch.stack([o["psnr"] for o in out_set.values()]))
            self.log("test/psnr", psnr, prog_bar=True, rank_zero_only=True)

            self.save_img_sequence(
                f"it{self.global_step}-test",
                f"it{self.global_step}-test",
                "(\d+)\.png",
                save_format="mp4",
                fps=30,
            )

            self.export()

    def export(self):
        mesh = self.model.export(self.config.export)
        self.save_mesh(
            f"it{self.global_step}-{self.config.model.geometry.isosurface.method}{self.config.model.geometry.isosurface.resolution}.obj",
            ortho_scale=self.config.export.ortho_scale,
            **mesh,
        )