File size: 34,536 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
import os
import cv2
import torch
import trimesh
import numpy as np

from kiui.op import safe_normalize, dot
from kiui.typing import *

class Mesh:
    """
    A torch-native trimesh class, with support for ``ply/obj/glb`` formats.

    Note:
        This class only supports one mesh with a single texture image (an albedo texture and a metallic-roughness texture).
    """
    def __init__(
        self,
        v: Optional[Tensor] = None,
        f: Optional[Tensor] = None,
        vn: Optional[Tensor] = None,
        fn: Optional[Tensor] = None,
        vt: Optional[Tensor] = None,
        ft: Optional[Tensor] = None,
        vc: Optional[Tensor] = None, # vertex color
        albedo: Optional[Tensor] = None,
        metallicRoughness: Optional[Tensor] = None,
        device: Optional[torch.device] = None,
    ):
        """Init a mesh directly using all attributes.

        Args:
            v (Optional[Tensor]): vertices, float [N, 3]. Defaults to None.
            f (Optional[Tensor]): faces, int [M, 3]. Defaults to None.
            vn (Optional[Tensor]): vertex normals, float [N, 3]. Defaults to None.
            fn (Optional[Tensor]): faces for normals, int [M, 3]. Defaults to None.
            vt (Optional[Tensor]): vertex uv coordinates, float [N, 2]. Defaults to None.
            ft (Optional[Tensor]): faces for uvs, int [M, 3]. Defaults to None.
            vc (Optional[Tensor]): vertex colors, float [N, 3]. Defaults to None.
            albedo (Optional[Tensor]): albedo texture, float [H, W, 3], RGB format. Defaults to None.
            metallicRoughness (Optional[Tensor]): metallic-roughness texture, float [H, W, 3], metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]. Defaults to None.
            device (Optional[torch.device]): torch device. Defaults to None.
        """
        self.device = device
        self.v = v
        self.vn = vn
        self.vt = vt
        self.f = f
        self.fn = fn
        self.ft = ft
        # will first see if there is vertex color to use
        self.vc = vc
        # only support a single albedo image
        self.albedo = albedo
        # pbr extension, metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]
        # ref: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
        self.metallicRoughness = metallicRoughness

        self.ori_center = 0
        self.ori_scale = 1

    @classmethod
    def load(cls, path, resize=True, clean=False, renormal=True, retex=False, bound=0.9, front_dir='+z', **kwargs):
        """load mesh from path.

        Args:
            path (str): path to mesh file, supports ply, obj, glb.
            clean (bool, optional): perform mesh cleaning at load (e.g., merge close vertices). Defaults to False.
            resize (bool, optional): auto resize the mesh using ``bound`` into [-bound, bound]^3. Defaults to True.
            renormal (bool, optional): re-calc the vertex normals. Defaults to True.
            retex (bool, optional): re-calc the uv coordinates, will overwrite the existing uv coordinates. Defaults to False.
            bound (float, optional): bound to resize. Defaults to 0.9.
            front_dir (str, optional): front-view direction of the mesh, should be [+-][xyz][ 123]. Defaults to '+z'.
            device (torch.device, optional): torch device. Defaults to None.
        
        Note:
            a ``device`` keyword argument can be provided to specify the torch device. 
            If it's not provided, we will try to use ``'cuda'`` as the device if it's available.

        Returns:
            Mesh: the loaded Mesh object.
        """
        # obj supports face uv
        if path.endswith(".obj"):
            mesh = cls.load_obj(path, **kwargs)
        # trimesh only supports vertex uv, but can load more formats
        else:
            mesh = cls.load_trimesh(path, **kwargs)
        
        # clean
        if clean:
            from kiui.mesh_utils import clean_mesh
            vertices = mesh.v.detach().cpu().numpy()
            triangles = mesh.f.detach().cpu().numpy()
            vertices, triangles = clean_mesh(vertices, triangles, remesh=False)
            mesh.v = torch.from_numpy(vertices).contiguous().float().to(mesh.device)
            mesh.f = torch.from_numpy(triangles).contiguous().int().to(mesh.device)

        print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}")
        # auto-normalize
        if resize:
            mesh.auto_size(bound=bound)
        # auto-fix normal
        if renormal or mesh.vn is None:
            mesh.auto_normal()
            print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}")
        # auto-fix texcoords
        if retex or (mesh.albedo is not None and mesh.vt is None):
            mesh.auto_uv(cache_path=path)
            print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}")

        # rotate front dir to +z
        if front_dir != "+z":
            # axis switch
            if "-z" in front_dir:
                T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]], device=mesh.device, dtype=torch.float32)
            elif "+x" in front_dir:
                T = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
            elif "-x" in front_dir:
                T = torch.tensor([[0, 0, -1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
            elif "+y" in front_dir:
                T = torch.tensor([[1, 0, 0], [0, 0, 1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
            elif "-y" in front_dir:
                T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
            else:
                T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
            # rotation (how many 90 degrees)
            if '1' in front_dir:
                T @= torch.tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) 
            elif '2' in front_dir:
                T @= torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) 
            elif '3' in front_dir:
                T @= torch.tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) 
            mesh.v @= T
            mesh.vn @= T

        return mesh

    # load from obj file
    @classmethod
    def load_obj(cls, path, albedo_path=None, device=None):
        """load an ``obj`` mesh.

        Args:
            path (str): path to mesh.
            albedo_path (str, optional): path to the albedo texture image, will overwrite the existing texture path if specified in mtl. Defaults to None.
            device (torch.device, optional): torch device. Defaults to None.
        
        Note: 
            We will try to read `mtl` path from `obj`, else we assume the file name is the same as `obj` but with `mtl` extension.
            The `usemtl` statement is ignored, and we only use the last material path in `mtl` file.

        Returns:
            Mesh: the loaded Mesh object.
        """
        assert os.path.splitext(path)[-1] == ".obj"

        mesh = cls()

        # device
        if device is None:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        mesh.device = device

        # load obj
        with open(path, "r") as f:
            lines = f.readlines()

        def parse_f_v(fv):
            # pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
            # supported forms:
            # f v1 v2 v3
            # f v1/vt1 v2/vt2 v3/vt3
            # f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
            # f v1//vn1 v2//vn2 v3//vn3
            xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")]
            xs.extend([-1] * (3 - len(xs)))
            return xs[0], xs[1], xs[2]

        vertices, texcoords, normals = [], [], []
        faces, tfaces, nfaces = [], [], []
        mtl_path = None

        for line in lines:
            split_line = line.split()
            # empty line
            if len(split_line) == 0:
                continue
            prefix = split_line[0].lower()
            # mtllib
            if prefix == "mtllib":
                mtl_path = split_line[1]
            # usemtl
            elif prefix == "usemtl":
                pass # ignored
            # v/vn/vt
            elif prefix == "v":
                vertices.append([float(v) for v in split_line[1:]])
            elif prefix == "vn":
                normals.append([float(v) for v in split_line[1:]])
            elif prefix == "vt":
                val = [float(v) for v in split_line[1:]]
                texcoords.append([val[0], 1.0 - val[1]])
            elif prefix == "f":
                vs = split_line[1:]
                nv = len(vs)
                v0, t0, n0 = parse_f_v(vs[0])
                for i in range(nv - 2):  # triangulate (assume vertices are ordered)
                    v1, t1, n1 = parse_f_v(vs[i + 1])
                    v2, t2, n2 = parse_f_v(vs[i + 2])
                    faces.append([v0, v1, v2])
                    tfaces.append([t0, t1, t2])
                    nfaces.append([n0, n1, n2])

        mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
        mesh.vt = (
            torch.tensor(texcoords, dtype=torch.float32, device=device)
            if len(texcoords) > 0
            else None
        )
        mesh.vn = (
            torch.tensor(normals, dtype=torch.float32, device=device)
            if len(normals) > 0
            else None
        )

        mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
        mesh.ft = (
            torch.tensor(tfaces, dtype=torch.int32, device=device)
            if len(texcoords) > 0
            else None
        )
        mesh.fn = (
            torch.tensor(nfaces, dtype=torch.int32, device=device)
            if len(normals) > 0
            else None
        )

        # see if there is vertex color
        use_vertex_color = False
        if mesh.v.shape[1] == 6:
            use_vertex_color = True
            mesh.vc = mesh.v[:, 3:]
            mesh.v = mesh.v[:, :3]
            print(f"[load_obj] use vertex color: {mesh.vc.shape}")

        # try to load texture image
        if not use_vertex_color:
            # try to retrieve mtl file
            mtl_path_candidates = []
            if mtl_path is not None:
                mtl_path_candidates.append(mtl_path)
                mtl_path_candidates.append(os.path.join(os.path.dirname(path), mtl_path))
            mtl_path_candidates.append(path.replace(".obj", ".mtl"))

            mtl_path = None
            for candidate in mtl_path_candidates:
                if os.path.exists(candidate):
                    mtl_path = candidate
                    break
            
            # if albedo_path is not provided, try retrieve it from mtl
            metallic_path = None
            roughness_path = None
            if mtl_path is not None and albedo_path is None:
                with open(mtl_path, "r") as f:
                    lines = f.readlines()

                for line in lines:
                    split_line = line.split()
                    # empty line
                    if len(split_line) == 0:
                        continue
                    prefix = split_line[0]
                    
                    if "map_Kd" in prefix:
                        # assume relative path!
                        albedo_path = os.path.join(os.path.dirname(path), split_line[1])
                        print(f"[load_obj] use texture from: {albedo_path}")
                    elif "map_Pm" in prefix:
                        metallic_path = os.path.join(os.path.dirname(path), split_line[1])
                    elif "map_Pr" in prefix:
                        roughness_path = os.path.join(os.path.dirname(path), split_line[1])
                    
            # still not found albedo_path, or the path doesn't exist
            if albedo_path is None or not os.path.exists(albedo_path):
                # init an empty texture
                print(f"[load_obj] init empty albedo!")
                # albedo = np.random.rand(1024, 1024, 3).astype(np.float32)
                albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])  # default color
            else:
                albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
                albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
                albedo = albedo.astype(np.float32) / 255
                print(f"[load_obj] load texture: {albedo.shape}")
            
            mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)
            
            # try to load metallic and roughness
            if metallic_path is not None and roughness_path is not None:
                print(f"[load_obj] load metallicRoughness from: {metallic_path}, {roughness_path}")
                metallic = cv2.imread(metallic_path, cv2.IMREAD_UNCHANGED)
                metallic = metallic.astype(np.float32) / 255
                roughness = cv2.imread(roughness_path, cv2.IMREAD_UNCHANGED)
                roughness = roughness.astype(np.float32) / 255
                metallicRoughness = np.stack([np.zeros_like(metallic), roughness, metallic], axis=-1)

                mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()

        return mesh

    @classmethod
    def load_trimesh(cls, path, device=None):
        """load a mesh using ``trimesh.load()``.

        Can load various formats like ``glb`` and serves as a fallback.

        Note:
            We will try to merge all meshes if the glb contains more than one, 
            but **this may cause the texture to lose**, since we only support one texture image!

        Args:
            path (str): path to the mesh file.
            device (torch.device, optional): torch device. Defaults to None.

        Returns:
            Mesh: the loaded Mesh object.
        """
        mesh = cls()

        # device
        if device is None:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        mesh.device = device

        # use trimesh to load ply/glb
        _data = trimesh.load(path)
        if isinstance(_data, trimesh.Scene):
            if len(_data.geometry) == 1:
                _mesh = list(_data.geometry.values())[0]
            else:
                print(f"[load_trimesh] concatenating {len(_data.geometry)} meshes.")
                _concat = []
                # loop the scene graph and apply transform to each mesh
                scene_graph = _data.graph.to_flattened() # dict {name: {transform: 4x4 mat, geometry: str}}
                for k, v in scene_graph.items():
                    name = v['geometry']
                    if name in _data.geometry and isinstance(_data.geometry[name], trimesh.Trimesh):
                        transform = v['transform']
                        _concat.append(_data.geometry[name].apply_transform(transform))
                _mesh = trimesh.util.concatenate(_concat)
        else:
            _mesh = _data
        
        if _mesh.visual.kind == 'vertex':
            vertex_colors = _mesh.visual.vertex_colors
            vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255
            mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device)
            print(f"[load_trimesh] use vertex color: {mesh.vc.shape}")
        elif _mesh.visual.kind == 'texture':
            _material = _mesh.visual.material
            if isinstance(_material, trimesh.visual.material.PBRMaterial):
                texture = np.array(_material.baseColorTexture).astype(np.float32) / 255
                # load metallicRoughness if present
                if _material.metallicRoughnessTexture is not None:
                    metallicRoughness = np.array(_material.metallicRoughnessTexture).astype(np.float32) / 255
                    mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()
            elif isinstance(_material, trimesh.visual.material.SimpleMaterial):
                texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255
            else:
                raise NotImplementedError(f"material type {type(_material)} not supported!")
            mesh.albedo = torch.tensor(texture[..., :3], dtype=torch.float32, device=device).contiguous()
            print(f"[load_trimesh] load texture: {texture.shape}")
        else:
            texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])
            mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
            print(f"[load_trimesh] failed to load texture.")

        vertices = _mesh.vertices

        try:
            texcoords = _mesh.visual.uv
            texcoords[:, 1] = 1 - texcoords[:, 1]
        except Exception as e:
            texcoords = None

        try:
            normals = _mesh.vertex_normals
        except Exception as e:
            normals = None

        # trimesh only support vertex uv...
        faces = tfaces = nfaces = _mesh.faces

        mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
        mesh.vt = (
            torch.tensor(texcoords, dtype=torch.float32, device=device)
            if texcoords is not None
            else None
        )
        mesh.vn = (
            torch.tensor(normals, dtype=torch.float32, device=device)
            if normals is not None
            else None
        )

        mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
        mesh.ft = (
            torch.tensor(tfaces, dtype=torch.int32, device=device)
            if texcoords is not None
            else None
        )
        mesh.fn = (
            torch.tensor(nfaces, dtype=torch.int32, device=device)
            if normals is not None
            else None
        )

        return mesh

    # sample surface (using trimesh)
    def sample_surface(self, count: int):
        """sample points on the surface of the mesh.

        Args:
            count (int): number of points to sample.

        Returns:
            torch.Tensor: the sampled points, float [count, 3].
        """
        _mesh = trimesh.Trimesh(vertices=self.v.detach().cpu().numpy(), faces=self.f.detach().cpu().numpy())
        points, face_idx = trimesh.sample.sample_surface(_mesh, count)
        points = torch.from_numpy(points).float().to(self.device)
        return points

    # aabb
    def aabb(self):
        """get the axis-aligned bounding box of the mesh.

        Returns:
            Tuple[torch.Tensor]: the min xyz and max xyz of the mesh.
        """
        return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values

    # unit size
    @torch.no_grad()
    def auto_size(self, bound=0.9):
        """auto resize the mesh.

        Args:
            bound (float, optional): resizing into ``[-bound, bound]^3``. Defaults to 0.9.
        """
        vmin, vmax = self.aabb()
        self.ori_center = (vmax + vmin) / 2
        self.ori_scale = 2 * bound / torch.max(vmax - vmin).item()
        self.v = (self.v - self.ori_center) * self.ori_scale

    def auto_normal(self):
        """auto calculate the vertex normals.
        """
        i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long()
        v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :]

        face_normals = torch.cross(v1 - v0, v2 - v0)

        # Splat face normals to vertices
        vn = torch.zeros_like(self.v)
        vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
        vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
        vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

        # Normalize, replace zero (degenerated) normals with some default value
        vn = torch.where(
            dot(vn, vn) > 1e-20,
            vn,
            torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device),
        )
        vn = safe_normalize(vn)

        self.vn = vn
        self.fn = self.f

    def auto_uv(self, cache_path=None, vmap=True):
        """auto calculate the uv coordinates.

        Args:
            cache_path (str, optional): path to save/load the uv cache as a npz file, this can avoid calculating uv every time when loading the same mesh, which is time-consuming. Defaults to None.
            vmap (bool, optional): remap vertices based on uv coordinates, so each v correspond to a unique vt (necessary for formats like gltf). 
                Usually this will duplicate the vertices on the edge of uv atlas. Defaults to True.
        """
        # try to load cache
        if cache_path is not None:
            cache_path = os.path.splitext(cache_path)[0] + "_uv.npz"
        if cache_path is not None and os.path.exists(cache_path):
            data = np.load(cache_path)
            vt_np, ft_np, vmapping = data["vt"], data["ft"], data["vmapping"]
        else:
            import xatlas

            v_np = self.v.detach().cpu().numpy()
            f_np = self.f.detach().int().cpu().numpy()
            atlas = xatlas.Atlas()
            atlas.add_mesh(v_np, f_np)
            chart_options = xatlas.ChartOptions()
            # chart_options.max_iterations = 4
            atlas.generate(chart_options=chart_options)
            vmapping, ft_np, vt_np = atlas[0]  # [N], [M, 3], [N, 2]

            # save to cache
            if cache_path is not None:
                np.savez(cache_path, vt=vt_np, ft=ft_np, vmapping=vmapping)
        
        vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
        ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)
        self.vt = vt
        self.ft = ft

        if vmap:
            vmapping = torch.from_numpy(vmapping.astype(np.int64)).long().to(self.device)
            self.align_v_to_vt(vmapping)
    
    def align_v_to_vt(self, vmapping=None):
        """ remap v/f and vn/fn to vt/ft.

        Args:
            vmapping (np.ndarray, optional): the mapping relationship from f to ft. Defaults to None.
        """
        if vmapping is None:
            ft = self.ft.view(-1).long()
            f = self.f.view(-1).long()
            vmapping = torch.zeros(self.vt.shape[0], dtype=torch.long, device=self.device)
            vmapping[ft] = f # scatter, randomly choose one if index is not unique

        self.v = self.v[vmapping]
        self.f = self.ft
        
        if self.vn is not None:
            self.vn = self.vn[vmapping]
            self.fn = self.ft

    def to(self, device):
        """move all tensor attributes to device.

        Args:
            device (torch.device): target device.

        Returns:
            Mesh: self.
        """
        self.device = device
        for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo", "vc", "metallicRoughness"]:
            tensor = getattr(self, name)
            if tensor is not None:
                setattr(self, name, tensor.to(device))
        return self
    
    def write(self, path):
        """write the mesh to a path.

        Args:
            path (str): path to write, supports ply, obj and glb.
        """
        if path.endswith(".ply"):
            self.write_ply(path)
        elif path.endswith(".obj"):
            self.write_obj(path)
        elif path.endswith(".glb") or path.endswith(".gltf"):
            self.write_glb(path)
        else:
            raise NotImplementedError(f"format {path} not supported!")
    
    def write_ply(self, path):
        """write the mesh in ply format. Only for geometry!

        Args:
            path (str): path to write.
        """

        if self.albedo is not None:
            print(f'[WARN] ply format does not support exporting texture, will ignore!')

        v_np = self.v.detach().cpu().numpy()
        f_np = self.f.detach().cpu().numpy()

        _mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
        _mesh.export(path)


    def write_glb(self, path):
        """write the mesh in glb/gltf format.
          This will create a scene with a single mesh.

        Args:
            path (str): path to write.
        """

        # assert self.v.shape[0] == self.vn.shape[0] and self.v.shape[0] == self.vt.shape[0]
        if self.vt is not None and self.v.shape[0] != self.vt.shape[0]:
            self.align_v_to_vt()

        import pygltflib

        f_np = self.f.detach().cpu().numpy().astype(np.uint32)
        f_np_blob = f_np.flatten().tobytes()

        v_np = self.v.detach().cpu().numpy().astype(np.float32)
        v_np_blob = v_np.tobytes()

        blob = f_np_blob + v_np_blob
        byteOffset = len(blob)

        # base mesh
        gltf = pygltflib.GLTF2(
            scene=0,
            scenes=[pygltflib.Scene(nodes=[0])],
            nodes=[pygltflib.Node(mesh=0)],
            meshes=[pygltflib.Mesh(primitives=[pygltflib.Primitive(
                # indices to accessors (0 is triangles)
                attributes=pygltflib.Attributes(
                    POSITION=1,
                ),
                indices=0,
            )])],
            buffers=[
                pygltflib.Buffer(byteLength=len(f_np_blob) + len(v_np_blob))
            ],
            # buffer view (based on dtype)
            bufferViews=[
                # triangles; as flatten (element) array
                pygltflib.BufferView(
                    buffer=0,
                    byteLength=len(f_np_blob),
                    target=pygltflib.ELEMENT_ARRAY_BUFFER, # GL_ELEMENT_ARRAY_BUFFER (34963)
                ),
                # positions; as vec3 array
                pygltflib.BufferView(
                    buffer=0,
                    byteOffset=len(f_np_blob),
                    byteLength=len(v_np_blob),
                    byteStride=12, # vec3
                    target=pygltflib.ARRAY_BUFFER, # GL_ARRAY_BUFFER (34962)
                ),
            ],
            accessors=[
                # 0 = triangles
                pygltflib.Accessor(
                    bufferView=0,
                    componentType=pygltflib.UNSIGNED_INT, # GL_UNSIGNED_INT (5125)
                    count=f_np.size,
                    type=pygltflib.SCALAR,
                    max=[int(f_np.max())],
                    min=[int(f_np.min())],
                ),
                # 1 = positions
                pygltflib.Accessor(
                    bufferView=1,
                    componentType=pygltflib.FLOAT, # GL_FLOAT (5126)
                    count=len(v_np),
                    type=pygltflib.VEC3,
                    max=v_np.max(axis=0).tolist(),
                    min=v_np.min(axis=0).tolist(),
                ),
            ],
        )

        # append texture info
        if self.vt is not None:

            vt_np = self.vt.detach().cpu().numpy().astype(np.float32)
            vt_np_blob = vt_np.tobytes()

            albedo = self.albedo.detach().cpu().numpy()
            albedo = (albedo * 255).astype(np.uint8)
            albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)
            albedo_blob = cv2.imencode('.png', albedo)[1].tobytes()

            # update primitive
            gltf.meshes[0].primitives[0].attributes.TEXCOORD_0 = 2
            gltf.meshes[0].primitives[0].material = 0

            # update materials
            gltf.materials.append(pygltflib.Material(
                pbrMetallicRoughness=pygltflib.PbrMetallicRoughness(
                    baseColorTexture=pygltflib.TextureInfo(index=0, texCoord=0),
                    metallicFactor=0.0,
                    roughnessFactor=1.0,
                ),
                alphaMode=pygltflib.OPAQUE,
                alphaCutoff=None,
                doubleSided=True,
            ))

            gltf.textures.append(pygltflib.Texture(sampler=0, source=0))
            gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
            gltf.images.append(pygltflib.Image(bufferView=3, mimeType="image/png"))

            # update buffers
            gltf.bufferViews.append(
                # index = 2, texcoords; as vec2 array
                pygltflib.BufferView(
                    buffer=0,
                    byteOffset=byteOffset,
                    byteLength=len(vt_np_blob),
                    byteStride=8, # vec2
                    target=pygltflib.ARRAY_BUFFER,
                )
            )

            gltf.accessors.append(
                # 2 = texcoords
                pygltflib.Accessor(
                    bufferView=2,
                    componentType=pygltflib.FLOAT,
                    count=len(vt_np),
                    type=pygltflib.VEC2,
                    max=vt_np.max(axis=0).tolist(),
                    min=vt_np.min(axis=0).tolist(),
                )
            )

            blob += vt_np_blob 
            byteOffset += len(vt_np_blob)

            gltf.bufferViews.append(
                # index = 3, albedo texture; as none target
                pygltflib.BufferView(
                    buffer=0,
                    byteOffset=byteOffset,
                    byteLength=len(albedo_blob),
                )
            )

            blob += albedo_blob
            byteOffset += len(albedo_blob)

            gltf.buffers[0].byteLength = byteOffset

            # append metllic roughness
            if self.metallicRoughness is not None:
                metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
                metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
                metallicRoughness = cv2.cvtColor(metallicRoughness, cv2.COLOR_RGB2BGR)
                metallicRoughness_blob = cv2.imencode('.png', metallicRoughness)[1].tobytes()

                # update texture definition
                gltf.materials[0].pbrMetallicRoughness.metallicFactor = 1.0
                gltf.materials[0].pbrMetallicRoughness.roughnessFactor = 1.0
                gltf.materials[0].pbrMetallicRoughness.metallicRoughnessTexture = pygltflib.TextureInfo(index=1, texCoord=0)

                gltf.textures.append(pygltflib.Texture(sampler=1, source=1))
                gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
                gltf.images.append(pygltflib.Image(bufferView=4, mimeType="image/png"))

                # update buffers
                gltf.bufferViews.append(
                    # index = 4, metallicRoughness texture; as none target
                    pygltflib.BufferView(
                        buffer=0,
                        byteOffset=byteOffset,
                        byteLength=len(metallicRoughness_blob),
                    )
                )

                blob += metallicRoughness_blob
                byteOffset += len(metallicRoughness_blob)

                gltf.buffers[0].byteLength = byteOffset

            
        # set actual data
        gltf.set_binary_blob(blob)

        # glb = b"".join(gltf.save_to_bytes())
        gltf.save(path)


    def write_obj(self, path):
        """write the mesh in obj format. Will also write the texture and mtl files.

        Args:
            path (str): path to write.
        """

        mtl_path = path.replace(".obj", ".mtl")
        albedo_path = path.replace(".obj", "_albedo.png")
        metallic_path = path.replace(".obj", "_metallic.png")
        roughness_path = path.replace(".obj", "_roughness.png")

        v_np = self.v.detach().cpu().numpy()
        vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None
        vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None
        f_np = self.f.detach().cpu().numpy()
        ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None
        fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None

        with open(path, "w") as fp:
            fp.write(f"mtllib {os.path.basename(mtl_path)} \n")

            for v in v_np:
                fp.write(f"v {v[0]} {v[1]} {v[2]} \n")

            if vt_np is not None:
                for v in vt_np:
                    fp.write(f"vt {v[0]} {1 - v[1]} \n")

            if vn_np is not None:
                for v in vn_np:
                    fp.write(f"vn {v[0]} {v[1]} {v[2]} \n")

            fp.write(f"usemtl defaultMat \n")
            for i in range(len(f_np)):
                fp.write(
                    f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
                             {f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
                             {f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n'
                )

        with open(mtl_path, "w") as fp:
            fp.write(f"newmtl defaultMat \n")
            fp.write(f"Ka 1 1 1 \n")
            fp.write(f"Kd 1 1 1 \n")
            fp.write(f"Ks 0 0 0 \n")
            fp.write(f"Tr 1 \n")
            fp.write(f"illum 1 \n")
            fp.write(f"Ns 0 \n")
            if self.albedo is not None:
                fp.write(f"map_Kd {os.path.basename(albedo_path)} \n")
            if self.metallicRoughness is not None:
                # ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering
                fp.write(f"map_Pm {os.path.basename(metallic_path)} \n")
                fp.write(f"map_Pr {os.path.basename(roughness_path)} \n")

        if self.albedo is not None:
            albedo = self.albedo.detach().cpu().numpy()
            albedo = (albedo * 255).astype(np.uint8)
            cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))
        
        if self.metallicRoughness is not None:
            metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
            metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
            cv2.imwrite(metallic_path, metallicRoughness[..., 2])
            cv2.imwrite(roughness_path, metallicRoughness[..., 1])