Spaces:
Runtime error
Runtime error
File size: 10,367 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import json
import math
import numpy as np
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF
import pytorch_lightning as pl
import datasets
from models.ray_utils import get_ortho_ray_directions_origins, get_ortho_rays, get_ray_directions
from utils.misc import get_rank
from glob import glob
import PIL.Image
def camNormal2worldNormal(rot_c2w, camNormal):
H,W,_ = camNormal.shape
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
return normal_img
def worldNormal2camNormal(rot_w2c, worldNormal):
H,W,_ = worldNormal.shape
normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
return normal_img
def trans_normal(normal, RT_w2c, RT_w2c_target):
normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
return normal_target_cam
def img2normal(img):
return (img/255.)*2-1
def normal2img(normal):
return np.uint8((normal*0.5+0.5)*255)
def norm_normalize(normal, dim=-1):
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)
return normal
def RT_opengl2opencv(RT):
# Build the coordinate transform matrix from world to computer vision camera
# R_world2cv = R_bcam2cv@R_world2bcam
# T_world2cv = R_bcam2cv@T_world2bcam
R = RT[:3, :3]
t = RT[:3, 3]
R_bcam2cv = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R_world2cv = R_bcam2cv @ R
t_world2cv = R_bcam2cv @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def normal_opengl2opencv(normal):
H,W,C = np.shape(normal)
# normal_img = np.reshape(normal, (H*W,C))
R_bcam2cv = np.array([1, -1, -1], np.float32)
normal_cv = normal * R_bcam2cv[None, None, :]
print(np.shape(normal_cv))
return normal_cv
def inv_RT(RT):
RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0)
RT_inv = np.linalg.inv(RT_h)
return RT_inv[:3, :]
def load_a_prediction(root_dir, test_object, imSize, view_types, load_color=False, cam_pose_dir=None,
normal_system='front', erode_mask=True, camera_type='ortho', cam_params=None):
all_images = []
all_normals = []
all_normals_world = []
all_masks = []
all_color_masks = []
all_poses = []
all_w2cs = []
directions = []
ray_origins = []
RT_front = np.loadtxt(glob(os.path.join(cam_pose_dir, '*_%s_RT.txt'%( 'front')))[0]) # world2cam matrix
RT_front_cv = RT_opengl2opencv(RT_front) # convert normal from opengl to opencv
for idx, view in enumerate(view_types):
print(os.path.join(root_dir,test_object))
normal_filepath = os.path.join(root_dir, test_object, 'normals_000_%s.png'%( view))
# Load key frame
if load_color: # use bgr
image =np.array(PIL.Image.open(normal_filepath.replace("normals", "rgb")).resize(imSize))[:, :, :3]
normal = np.array(PIL.Image.open(normal_filepath).resize(imSize))
mask = normal[:, :, 3]
normal = normal[:, :, :3]
color_mask = np.array(PIL.Image.open(os.path.join(root_dir,test_object, 'masked_colors/rgb_000_%s.png'%( view))).resize(imSize))[:, :, 3]
invalid_color_mask = color_mask < 255*0.5
threshold = np.ones_like(image[:, :, 0]) * 250
invalid_white_mask = (image[:, :, 0] > threshold) & (image[:, :, 1] > threshold) & (image[:, :, 2] > threshold)
invalid_color_mask_final = invalid_color_mask & invalid_white_mask
color_mask = (1 - invalid_color_mask_final) > 0
# if erode_mask:
# kernel = np.ones((3, 3), np.uint8)
# mask = cv2.erode(mask, kernel, iterations=1)
RT = np.loadtxt(os.path.join(cam_pose_dir, '000_%s_RT.txt'%( view))) # world2cam matrix
normal = img2normal(normal)
normal[mask==0] = [0,0,0]
mask = mask> (0.5*255)
if load_color:
all_images.append(image)
all_masks.append(mask)
all_color_masks.append(color_mask)
RT_cv = RT_opengl2opencv(RT) # convert normal from opengl to opencv
all_poses.append(inv_RT(RT_cv)) # cam2world
all_w2cs.append(RT_cv)
# whether to
normal_cam_cv = normal_opengl2opencv(normal)
if normal_system == 'front':
print("the loaded normals are defined in the system of front view")
normal_world = camNormal2worldNormal(inv_RT(RT_front_cv)[:3, :3], normal_cam_cv)
elif normal_system == 'self':
print("the loaded normals are in their independent camera systems")
normal_world = camNormal2worldNormal(inv_RT(RT_cv)[:3, :3], normal_cam_cv)
all_normals.append(normal_cam_cv)
all_normals_world.append(normal_world)
if camera_type == 'ortho':
origins, dirs = get_ortho_ray_directions_origins(W=imSize[0], H=imSize[1])
elif camera_type == 'pinhole':
dirs = get_ray_directions(W=imSize[0], H=imSize[1],
fx=cam_params[0], fy=cam_params[1], cx=cam_params[2], cy=cam_params[3])
origins = dirs # occupy a position
else:
raise Exception("not support camera type")
ray_origins.append(origins)
directions.append(dirs)
if not load_color:
all_images = [normal2img(x) for x in all_normals_world]
return np.stack(all_images), np.stack(all_masks), np.stack(all_normals), \
np.stack(all_normals_world), np.stack(all_poses), np.stack(all_w2cs), np.stack(ray_origins), np.stack(directions), np.stack(all_color_masks)
class OrthoDatasetBase():
def setup(self, config, split):
self.config = config
self.split = split
self.rank = get_rank()
self.data_dir = self.config.root_dir
self.object_name = self.config.scene
self.scene = self.config.scene
self.imSize = self.config.imSize
self.load_color = True
self.img_wh = [self.imSize[0], self.imSize[1]]
self.w = self.img_wh[0]
self.h = self.img_wh[1]
self.camera_type = self.config.camera_type
self.camera_params = self.config.camera_params # [fx, fy, cx, cy]
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
self.view_weights = torch.from_numpy(np.array(self.config.view_weights)).float().to(self.rank).view(-1)
self.view_weights = self.view_weights.view(-1,1,1).repeat(1, self.h, self.w)
if self.config.cam_pose_dir is None:
self.cam_pose_dir = "./datasets/fixed_poses"
else:
self.cam_pose_dir = self.config.cam_pose_dir
self.images_np, self.masks_np, self.normals_cam_np, self.normals_world_np, \
self.pose_all_np, self.w2c_all_np, self.origins_np, self.directions_np, self.rgb_masks_np = load_a_prediction(
self.data_dir, self.object_name, self.imSize, self.view_types,
self.load_color, self.cam_pose_dir, normal_system='front',
camera_type=self.camera_type, cam_params=self.camera_params)
self.has_mask = True
self.apply_mask = self.config.apply_mask
self.all_c2w = torch.from_numpy(self.pose_all_np)
self.all_images = torch.from_numpy(self.images_np) / 255.
self.all_fg_masks = torch.from_numpy(self.masks_np)
self.all_rgb_masks = torch.from_numpy(self.rgb_masks_np)
self.all_normals_world = torch.from_numpy(self.normals_world_np)
self.origins = torch.from_numpy(self.origins_np)
self.directions = torch.from_numpy(self.directions_np)
self.directions = self.directions.float().to(self.rank)
self.origins = self.origins.float().to(self.rank)
self.all_rgb_masks = self.all_rgb_masks.float().to(self.rank)
self.all_c2w, self.all_images, self.all_fg_masks, self.all_normals_world = \
self.all_c2w.float().to(self.rank), \
self.all_images.float().to(self.rank), \
self.all_fg_masks.float().to(self.rank), \
self.all_normals_world.float().to(self.rank)
class OrthoDataset(Dataset, OrthoDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __len__(self):
return len(self.all_images)
def __getitem__(self, index):
return {
'index': index
}
class OrthoIterableDataset(IterableDataset, OrthoDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __iter__(self):
while True:
yield {}
@datasets.register('ortho')
class OrthoDataModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
def setup(self, stage=None):
if stage in [None, 'fit']:
self.train_dataset = OrthoIterableDataset(self.config, 'train')
if stage in [None, 'fit', 'validate']:
self.val_dataset = OrthoDataset(self.config, self.config.get('val_split', 'train'))
if stage in [None, 'test']:
self.test_dataset = OrthoDataset(self.config, self.config.get('test_split', 'test'))
if stage in [None, 'predict']:
self.predict_dataset = OrthoDataset(self.config, 'train')
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size):
sampler = None
return DataLoader(
dataset,
num_workers=os.cpu_count(),
batch_size=batch_size,
pin_memory=True,
sampler=sampler
)
def train_dataloader(self):
return self.general_loader(self.train_dataset, batch_size=1)
def val_dataloader(self):
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self):
return self.general_loader(self.predict_dataset, batch_size=1)
|