File size: 10,367 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import json
import math
import numpy as np
from PIL import Image
import cv2

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF

import pytorch_lightning as pl

import datasets
from models.ray_utils import get_ortho_ray_directions_origins, get_ortho_rays, get_ray_directions
from utils.misc import get_rank

from glob import glob
import PIL.Image


def camNormal2worldNormal(rot_c2w, camNormal):
    H,W,_ = camNormal.shape
    normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])

    return normal_img

def worldNormal2camNormal(rot_w2c, worldNormal):
    H,W,_ = worldNormal.shape
    normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])

    return normal_img

def trans_normal(normal, RT_w2c, RT_w2c_target):

    normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
    normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)

    return normal_target_cam

def img2normal(img):
    return (img/255.)*2-1

def normal2img(normal):
    return np.uint8((normal*0.5+0.5)*255)

def norm_normalize(normal, dim=-1):

    normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)

    return normal

def RT_opengl2opencv(RT):
     # Build the coordinate transform matrix from world to computer vision camera
    # R_world2cv = R_bcam2cv@R_world2bcam
    # T_world2cv = R_bcam2cv@T_world2bcam

    R = RT[:3, :3]
    t = RT[:3, 3]

    R_bcam2cv = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)

    R_world2cv = R_bcam2cv @ R
    t_world2cv = R_bcam2cv @ t

    RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)

    return RT

def normal_opengl2opencv(normal):
    H,W,C = np.shape(normal)
    # normal_img = np.reshape(normal, (H*W,C))
    R_bcam2cv = np.array([1, -1, -1], np.float32)
    normal_cv = normal * R_bcam2cv[None, None, :]

    print(np.shape(normal_cv))

    return normal_cv

def inv_RT(RT):
    RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0)
    RT_inv = np.linalg.inv(RT_h)

    return RT_inv[:3, :]


def load_a_prediction(root_dir, test_object, imSize, view_types, load_color=False, cam_pose_dir=None,
                         normal_system='front', erode_mask=True, camera_type='ortho', cam_params=None):

    all_images = []
    all_normals = []
    all_normals_world = []
    all_masks = []
    all_color_masks = []
    all_poses = []
    all_w2cs = []
    directions = []
    ray_origins = []

    RT_front = np.loadtxt(glob(os.path.join(cam_pose_dir, '*_%s_RT.txt'%( 'front')))[0])   # world2cam matrix
    RT_front_cv = RT_opengl2opencv(RT_front)   # convert normal from opengl to opencv
    for idx, view in enumerate(view_types):
        print(os.path.join(root_dir,test_object))
        normal_filepath = os.path.join(root_dir, test_object, 'normals_000_%s.png'%( view))
        # Load key frame
        if load_color:  # use bgr
            image =np.array(PIL.Image.open(normal_filepath.replace("normals", "rgb")).resize(imSize))[:, :, :3]

        normal = np.array(PIL.Image.open(normal_filepath).resize(imSize))
        mask = normal[:, :, 3]
        normal = normal[:, :, :3]

        color_mask = np.array(PIL.Image.open(os.path.join(root_dir,test_object, 'masked_colors/rgb_000_%s.png'%( view))).resize(imSize))[:, :, 3]
        invalid_color_mask = color_mask < 255*0.5
        threshold =  np.ones_like(image[:, :, 0]) * 250
        invalid_white_mask = (image[:, :, 0] > threshold) & (image[:, :, 1] > threshold) & (image[:, :, 2] > threshold)
        invalid_color_mask_final = invalid_color_mask & invalid_white_mask
        color_mask = (1 - invalid_color_mask_final) > 0

        # if erode_mask:
        #     kernel = np.ones((3, 3), np.uint8)
        #     mask = cv2.erode(mask, kernel, iterations=1)

        RT = np.loadtxt(os.path.join(cam_pose_dir, '000_%s_RT.txt'%( view)))  # world2cam matrix

        normal = img2normal(normal)

        normal[mask==0] = [0,0,0]
        mask = mask> (0.5*255)
        if load_color:
            all_images.append(image)
        
        all_masks.append(mask)
        all_color_masks.append(color_mask)
        RT_cv = RT_opengl2opencv(RT)   # convert normal from opengl to opencv
        all_poses.append(inv_RT(RT_cv))   # cam2world
        all_w2cs.append(RT_cv)

        # whether to 
        normal_cam_cv = normal_opengl2opencv(normal)

        if normal_system == 'front':
            print("the loaded normals are defined in the system of front view")
            normal_world = camNormal2worldNormal(inv_RT(RT_front_cv)[:3, :3], normal_cam_cv)
        elif normal_system == 'self':
            print("the loaded normals are in their independent camera systems")
            normal_world = camNormal2worldNormal(inv_RT(RT_cv)[:3, :3], normal_cam_cv)
        all_normals.append(normal_cam_cv)
        all_normals_world.append(normal_world)

        if camera_type == 'ortho':
            origins, dirs = get_ortho_ray_directions_origins(W=imSize[0], H=imSize[1])
        elif camera_type == 'pinhole':
            dirs = get_ray_directions(W=imSize[0], H=imSize[1],
                                                 fx=cam_params[0], fy=cam_params[1], cx=cam_params[2], cy=cam_params[3])
            origins = dirs # occupy a position
        else:
            raise Exception("not support camera type")
        ray_origins.append(origins)
        directions.append(dirs)
        
        
        if not load_color:
            all_images = [normal2img(x) for x in all_normals_world]


    return np.stack(all_images), np.stack(all_masks), np.stack(all_normals), \
        np.stack(all_normals_world), np.stack(all_poses), np.stack(all_w2cs), np.stack(ray_origins), np.stack(directions), np.stack(all_color_masks)


class OrthoDatasetBase():
    def setup(self, config, split):
        self.config = config
        self.split = split
        self.rank = get_rank()

        self.data_dir = self.config.root_dir
        self.object_name = self.config.scene
        self.scene = self.config.scene
        self.imSize = self.config.imSize
        self.load_color = True
        self.img_wh = [self.imSize[0], self.imSize[1]]
        self.w = self.img_wh[0]
        self.h = self.img_wh[1]
        self.camera_type = self.config.camera_type
        self.camera_params = self.config.camera_params  # [fx, fy, cx, cy]
        
        self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']

        self.view_weights = torch.from_numpy(np.array(self.config.view_weights)).float().to(self.rank).view(-1)
        self.view_weights = self.view_weights.view(-1,1,1).repeat(1, self.h, self.w)

        if self.config.cam_pose_dir is None:
            self.cam_pose_dir = "./datasets/fixed_poses"
        else:
            self.cam_pose_dir = self.config.cam_pose_dir
            
        self.images_np, self.masks_np, self.normals_cam_np, self.normals_world_np, \
            self.pose_all_np, self.w2c_all_np, self.origins_np, self.directions_np, self.rgb_masks_np = load_a_prediction(
                self.data_dir, self.object_name, self.imSize, self.view_types,
                self.load_color, self.cam_pose_dir, normal_system='front', 
                camera_type=self.camera_type, cam_params=self.camera_params)

        self.has_mask = True
        self.apply_mask = self.config.apply_mask

        self.all_c2w = torch.from_numpy(self.pose_all_np)
        self.all_images = torch.from_numpy(self.images_np) / 255.
        self.all_fg_masks = torch.from_numpy(self.masks_np)
        self.all_rgb_masks = torch.from_numpy(self.rgb_masks_np)
        self.all_normals_world = torch.from_numpy(self.normals_world_np)
        self.origins = torch.from_numpy(self.origins_np)
        self.directions = torch.from_numpy(self.directions_np)

        self.directions = self.directions.float().to(self.rank)
        self.origins = self.origins.float().to(self.rank)
        self.all_rgb_masks = self.all_rgb_masks.float().to(self.rank)
        self.all_c2w, self.all_images, self.all_fg_masks, self.all_normals_world = \
            self.all_c2w.float().to(self.rank), \
            self.all_images.float().to(self.rank), \
            self.all_fg_masks.float().to(self.rank), \
            self.all_normals_world.float().to(self.rank)
        

class OrthoDataset(Dataset, OrthoDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __len__(self):
        return len(self.all_images)
    
    def __getitem__(self, index):
        return {
            'index': index
        }


class OrthoIterableDataset(IterableDataset, OrthoDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __iter__(self):
        while True:
            yield {}


@datasets.register('ortho')
class OrthoDataModule(pl.LightningDataModule):
    def __init__(self, config):
        super().__init__()
        self.config = config
    
    def setup(self, stage=None):
        if stage in [None, 'fit']:
            self.train_dataset = OrthoIterableDataset(self.config, 'train')
        if stage in [None, 'fit', 'validate']:
            self.val_dataset = OrthoDataset(self.config, self.config.get('val_split', 'train'))
        if stage in [None, 'test']:
            self.test_dataset = OrthoDataset(self.config, self.config.get('test_split', 'test'))
        if stage in [None, 'predict']:
            self.predict_dataset = OrthoDataset(self.config, 'train')    

    def prepare_data(self):
        pass
    
    def general_loader(self, dataset, batch_size):
        sampler = None
        return DataLoader(
            dataset, 
            num_workers=os.cpu_count(), 
            batch_size=batch_size,
            pin_memory=True,
            sampler=sampler
        )
    
    def train_dataloader(self):
        return self.general_loader(self.train_dataset, batch_size=1)

    def val_dataloader(self):
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1) 

    def predict_dataloader(self):
        return self.general_loader(self.predict_dataset, batch_size=1)