Spaces:
Runtime error
Runtime error
File size: 9,450 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import functools
import importlib
import os
from functools import partial
from inspect import isfunction
import fsspec
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from safetensors.torch import load_file as load_safetensors
from einops import rearrange
from mediapy import write_image
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def get_string_from_tuple(s):
try:
# Check if the string starts and ends with parentheses
if s[0] == "(" and s[-1] == ")":
# Convert the string to a tuple
t = eval(s)
# Check if the type of t is tuple
if type(t) == tuple:
return t[0]
else:
pass
except:
pass
return s
def is_power_of_two(n):
"""
chat.openai.com/chat
Return True if n is a power of 2, otherwise return False.
The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False.
The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False.
If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise.
Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False.
"""
if n <= 0:
return False
return (n & (n - 1)) == 0
def autocast(f, enabled=True):
def do_autocast(*args, **kwargs):
with torch.cuda.amp.autocast(
enabled=enabled,
dtype=torch.get_autocast_gpu_dtype(),
cache_enabled=torch.is_autocast_cache_enabled(),
):
return f(*args, **kwargs)
return do_autocast
def load_partial_from_config(config):
return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
if isinstance(xc[bi], list):
text_seq = xc[bi][0]
else:
text_seq = xc[bi]
lines = "\n".join(
text_seq[start : start + nc] for start in range(0, len(text_seq), nc)
)
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def partialclass(cls, *args, **kwargs):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
return NewCls
def make_path_absolute(path):
fs, p = fsspec.core.url_to_fs(path)
if fs.protocol == "file":
return os.path.abspath(p)
return path
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def isheatmap(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 2
def isneighbors(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)
def exists(x):
return x is not None
def expand_dims_like(x, y):
while x.dim() != y.dim():
x = x.unsqueeze(-1)
return x
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False, invalidate_cache=True):
module, cls = string.rsplit(".", 1)
if invalidate_cache:
importlib.invalidate_caches()
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
return x[(...,) + (None,) * dims_to_append]
def load_model_from_config(config, ckpt, verbose=True, freeze=True):
print(f"Loading model from {ckpt}")
if ckpt.endswith("ckpt"):
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
elif ckpt.endswith("safetensors"):
sd = load_safetensors(ckpt)
else:
raise NotImplementedError
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
if freeze:
for param in model.parameters():
param.requires_grad = False
model.eval()
return model
def get_configs_path() -> str:
"""
Get the `configs` directory.
For a working copy, this is the one in the root of the repository,
but for an installed copy, it's in the `sgm` package (see pyproject.toml).
"""
this_dir = os.path.dirname(__file__)
candidates = (
os.path.join(this_dir, "configs"),
os.path.join(this_dir, "..", "configs"),
)
for candidate in candidates:
candidate = os.path.abspath(candidate)
if os.path.isdir(candidate):
return candidate
raise FileNotFoundError(f"Could not find SGM configs in {candidates}")
def get_nested_attribute(obj, attribute_path, depth=None, return_key=False):
"""
Will return the result of a recursive get attribute call.
E.g.:
a.b.c
= getattr(getattr(a, "b"), "c")
= get_nested_attribute(a, "b.c")
If any part of the attribute call is an integer x with current obj a, will
try to call a[x] instead of a.x first.
"""
attributes = attribute_path.split(".")
if depth is not None and depth > 0:
attributes = attributes[:depth]
assert len(attributes) > 0, "At least one attribute should be selected"
current_attribute = obj
current_key = None
for level, attribute in enumerate(attributes):
current_key = ".".join(attributes[: level + 1])
try:
id_ = int(attribute)
current_attribute = current_attribute[id_]
except ValueError:
current_attribute = getattr(current_attribute, attribute)
return (current_attribute, current_key) if return_key else current_attribute
def video_frames_as_grid(frames, save_path):
# frames: [T, C, H, W]
frames = frames.detach().cpu()
frames = rearrange(frames, "t c h w -> h (t w) c")
write_image(save_path, frames)
def server_safe_call(keep_trying: bool = False):
"""Decorator for server calls. If the call fails, it will keep trying until it succeeds.
Args:
keep_trying (bool, optional): whether to call again if the first try fails. Defaults to False.
"""
def decorator(func):
def wrapper(*args, **kwargs):
success = False
while not success:
try:
ret = func(*args, **kwargs)
success = True
except KeyboardInterrupt:
raise
except:
if not keep_trying:
break
return ret
return wrapper
return decorator
|