File size: 4,879 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# MIT License

# Copyright (c) 2022 Petr Kellnhofer

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import torch


def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor:
    """
    Left-multiplies MxM @ NxM. Returns NxM.
    """
    res = torch.matmul(vectors4, matrix.T)
    return res


def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
    """
    Normalize vector lengths.
    """
    return vectors / (torch.norm(vectors, dim=-1, keepdim=True))


def torch_dot(x: torch.Tensor, y: torch.Tensor):
    """
    Dot product of two tensors.
    """
    return (x * y).sum(-1)


def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length):
    """
    Author: Petr Kellnhofer
    Intersects rays with the [-1, 1] NDC volume.
    Returns min and max distance of entry.
    Returns -1 for no intersection.
    https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
    """
    o_shape = rays_o.shape
    rays_o = rays_o.detach().reshape(-1, 3)
    rays_d = rays_d.detach().reshape(-1, 3)

    bb_min = [
        -1 * (box_side_length / 2),
        -1 * (box_side_length / 2),
        -1 * (box_side_length / 2),
    ]
    bb_max = [
        1 * (box_side_length / 2),
        1 * (box_side_length / 2),
        1 * (box_side_length / 2),
    ]
    bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device)
    is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device)

    # Precompute inverse for stability.
    invdir = 1 / rays_d
    sign = (invdir < 0).long()

    # Intersect with YZ plane.
    tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[
        ..., 0
    ]
    tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[
        ..., 0
    ]

    # Intersect with XZ plane.
    tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[
        ..., 1
    ]
    tymax = (
        bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]
    ) * invdir[..., 1]

    # Resolve parallel rays.
    is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False

    # Use the shortest intersection.
    tmin = torch.max(tmin, tymin)
    tmax = torch.min(tmax, tymax)

    # Intersect with XY plane.
    tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[
        ..., 2
    ]
    tzmax = (
        bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]
    ) * invdir[..., 2]

    # Resolve parallel rays.
    is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False

    # Use the shortest intersection.
    tmin = torch.max(tmin, tzmin)
    tmax = torch.min(tmax, tzmax)

    # Mark invalid.
    tmin[torch.logical_not(is_valid)] = -1
    tmax[torch.logical_not(is_valid)] = -2

    return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1)


def linspace(start: torch.Tensor, stop: torch.Tensor, num: int):
    """
    Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive.
    Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch.
    """
    # create a tensor of 'num' steps from 0 to 1
    steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1)

    # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings
    # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript
    #   "cannot statically infer the expected size of a list in this contex", hence the code below
    for i in range(start.ndim):
        steps = steps.unsqueeze(-1)

    # the output starts at 'start' and increments until 'stop' in each dimension
    out = start[None] + steps * (stop - start)[None]

    return out