File size: 10,830 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
import importlib


def class_for_name(module_name, class_name):
    # load the module, will raise ImportError if module cannot be loaded
    m = importlib.import_module(module_name)
    return getattr(m, class_name)


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
        padding_mode="reflect",
    )


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=1,
        stride=stride,
        bias=False,
        padding_mode="reflect",
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        groups=1,
        base_width=64,
        dilation=1,
        norm_layer=None,
    ):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
            # norm_layer = nn.InstanceNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes, track_running_stats=False, affine=True)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes, track_running_stats=False, affine=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion = 4

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        groups=1,
        base_width=64,
        dilation=1,
        norm_layer=None,
    ):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
            # norm_layer = nn.InstanceNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width, track_running_stats=False, affine=True)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width, track_running_stats=False, affine=True)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(
            planes * self.expansion, track_running_stats=False, affine=True
        )
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class conv(nn.Module):
    def __init__(self, num_in_layers, num_out_layers, kernel_size, stride):
        super(conv, self).__init__()
        self.kernel_size = kernel_size
        self.conv = nn.Conv2d(
            num_in_layers,
            num_out_layers,
            kernel_size=kernel_size,
            stride=stride,
            padding=(self.kernel_size - 1) // 2,
            padding_mode="reflect",
        )
        # self.bn = nn.InstanceNorm2d(
        #     num_out_layers, track_running_stats=False, affine=True
        # )
        self.bn = nn.BatchNorm2d(num_out_layers, track_running_stats=False, affine=True)
        # self.bn = nn.LayerNorm(num_out_layers)

    def forward(self, x):
        return F.elu(self.bn(self.conv(x)), inplace=True)


class upconv(nn.Module):
    def __init__(self, num_in_layers, num_out_layers, kernel_size, scale):
        super(upconv, self).__init__()
        self.scale = scale
        self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1)

    def forward(self, x):
        x = nn.functional.interpolate(
            x, scale_factor=self.scale, align_corners=True, mode="bilinear"
        )
        return self.conv(x)


class ResUNet(nn.Module):
    def __init__(
        self,
        encoder="resnet34",
        coarse_out_ch=32,
        fine_out_ch=32,
        norm_layer=None,
        coarse_only=False,
    ):
        super(ResUNet, self).__init__()
        assert encoder in [
            "resnet18",
            "resnet34",
            "resnet50",
            "resnet101",
            "resnet152",
        ], "Incorrect encoder type"
        if encoder in ["resnet18", "resnet34"]:
            filters = [64, 128, 256, 512]
        else:
            filters = [256, 512, 1024, 2048]
        self.coarse_only = coarse_only
        if self.coarse_only:
            fine_out_ch = 0
        self.coarse_out_ch = coarse_out_ch
        self.fine_out_ch = fine_out_ch
        out_ch = coarse_out_ch + fine_out_ch

        # original
        layers = [3, 4, 6, 3]
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
            # norm_layer = nn.InstanceNorm2d
        self._norm_layer = norm_layer
        self.dilation = 1
        block = BasicBlock
        replace_stride_with_dilation = [False, False, False]
        self.inplanes = 64
        self.groups = 1
        self.base_width = 64
        self.conv1 = nn.Conv2d(
            3,
            self.inplanes,
            kernel_size=7,
            stride=2,
            padding=3,
            bias=False,
            padding_mode="reflect",
        )
        self.bn1 = norm_layer(self.inplanes, track_running_stats=False, affine=True)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
        self.layer2 = self._make_layer(
            block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
        )
        self.layer3 = self._make_layer(
            block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
        )

        # decoder
        self.upconv3 = upconv(filters[2], 128, 3, 2)
        self.iconv3 = conv(filters[1] + 128, 128, 3, 1)
        self.upconv2 = upconv(128, 64, 3, 2)
        self.iconv2 = conv(filters[0] + 64, out_ch, 3, 1)

        # fine-level conv
        self.out_conv = nn.Conv2d(out_ch, out_ch, 1, 1)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(
                    planes * block.expansion, track_running_stats=False, affine=True
                ),
            )

        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride,
                downsample,
                self.groups,
                self.base_width,
                previous_dilation,
                norm_layer,
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def skipconnect(self, x1, x2):
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2))

        # for padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd

        x = torch.cat([x2, x1], dim=1)
        return x

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))

        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)

        x = self.upconv3(x3)
        x = self.skipconnect(x2, x)
        x = self.iconv3(x)

        x = self.upconv2(x)
        x = self.skipconnect(x1, x)
        x = self.iconv2(x)

        x_out = self.out_conv(x)

        return x_out

        # if self.coarse_only:
        #     x_coarse = x_out
        #     x_fine = None
        # else:
        #     x_coarse = x_out[:, : self.coarse_out_ch, :]
        #     x_fine = x_out[:, -self.fine_out_ch :, :]
        # return x_coarse, x_fine