File size: 12,912 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd.profiler as profiler
import numpy as np
from einops import rearrange, repeat, einsum

from .math_utils import get_ray_limits_box, linspace

from ...modules.diffusionmodules.openaimodel import Timestep


class ImageEncoder(nn.Module):
    def __init__(self, output_dim: int = 64) -> None:
        super().__init__()
        self.output_dim = output_dim

    def forward(self, image):
        return image


class PositionalEncoding(torch.nn.Module):
    """
    Implement NeRF's positional encoding
    """

    def __init__(self, num_freqs=6, d_in=3, freq_factor=np.pi, include_input=True):
        super().__init__()
        self.num_freqs = num_freqs
        self.d_in = d_in
        self.freqs = freq_factor * 2.0 ** torch.arange(0, num_freqs)
        self.d_out = self.num_freqs * 2 * d_in
        self.include_input = include_input
        if include_input:
            self.d_out += d_in
        # f1 f1 f2 f2 ... to multiply x by
        self.register_buffer(
            "_freqs", torch.repeat_interleave(self.freqs, 2).view(1, -1, 1)
        )
        # 0 pi/2 0 pi/2 ... so that
        # (sin(x + _phases[0]), sin(x + _phases[1]) ...) = (sin(x), cos(x)...)
        _phases = torch.zeros(2 * self.num_freqs)
        _phases[1::2] = np.pi * 0.5
        self.register_buffer("_phases", _phases.view(1, -1, 1))

    def forward(self, x):
        """
        Apply positional encoding (new implementation)
        :param x (batch, self.d_in)
        :return (batch, self.d_out)
        """
        with profiler.record_function("positional_enc"):
            # embed = x.unsqueeze(1).repeat(1, self.num_freqs * 2, 1)
            embed = repeat(x, "... C -> ... N C", N=self.num_freqs * 2)
            embed = torch.sin(torch.addcmul(self._phases, embed, self._freqs))
            embed = rearrange(embed, "... N C -> ... (N C)")
            if self.include_input:
                embed = torch.cat((x, embed), dim=-1)
            return embed


class RayGenerator(torch.nn.Module):
    """
    from camera pose and intrinsics to ray origins and directions
    """

    def __init__(self):
        super().__init__()
        (
            self.ray_origins_h,
            self.ray_directions,
            self.depths,
            self.image_coords,
            self.rendering_options,
        ) = (None, None, None, None, None)

    def forward(self, cam2world_matrix, intrinsics, render_size):
        """
        Create batches of rays and return origins and directions.

        cam2world_matrix: (N, 4, 4)
        intrinsics: (N, 3, 3)
        render_size: int

        ray_origins: (N, M, 3)
        ray_dirs: (N, M, 2)
        """

        N, M = cam2world_matrix.shape[0], render_size**2
        cam_locs_world = cam2world_matrix[:, :3, 3]
        fx = intrinsics[:, 0, 0]
        fy = intrinsics[:, 1, 1]
        cx = intrinsics[:, 0, 2]
        cy = intrinsics[:, 1, 2]
        sk = intrinsics[:, 0, 1]

        uv = torch.stack(
            torch.meshgrid(
                torch.arange(
                    render_size, dtype=torch.float32, device=cam2world_matrix.device
                ),
                torch.arange(
                    render_size, dtype=torch.float32, device=cam2world_matrix.device
                ),
                indexing="ij",
            )
        )
        uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
        uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)

        x_cam = uv[:, :, 0].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
        y_cam = uv[:, :, 1].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
        z_cam = torch.ones((N, M), device=cam2world_matrix.device)

        x_lift = (
            (
                x_cam
                - cx.unsqueeze(-1)
                + cy.unsqueeze(-1) * sk.unsqueeze(-1) / fy.unsqueeze(-1)
                - sk.unsqueeze(-1) * y_cam / fy.unsqueeze(-1)
            )
            / fx.unsqueeze(-1)
            * z_cam
        )
        y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam

        cam_rel_points = torch.stack(
            (x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1
        )

        # NOTE: this should be named _blender2opencv
        _opencv2blender = (
            torch.tensor(
                [
                    [1, 0, 0, 0],
                    [0, -1, 0, 0],
                    [0, 0, -1, 0],
                    [0, 0, 0, 1],
                ],
                dtype=torch.float32,
                device=cam2world_matrix.device,
            )
            .unsqueeze(0)
            .repeat(N, 1, 1)
        )

        cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)

        world_rel_points = torch.bmm(
            cam2world_matrix, cam_rel_points.permute(0, 2, 1)
        ).permute(0, 2, 1)[:, :, :3]

        ray_dirs = world_rel_points - cam_locs_world[:, None, :]
        ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)

        ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)

        return ray_origins, ray_dirs


class RaySampler(torch.nn.Module):
    def __init__(
        self,
        num_samples_per_ray,
        bbox_length=1.0,
        near=0.5,
        far=10000.0,
        disparity=False,
    ):
        super().__init__()
        self.num_samples_per_ray = num_samples_per_ray
        self.bbox_length = bbox_length
        self.near = near
        self.far = far
        self.disparity = disparity

    def forward(self, ray_origins, ray_directions):
        if not self.disparity:
            t_start, t_end = get_ray_limits_box(
                ray_origins, ray_directions, 2 * self.bbox_length
            )
        else:
            t_start = torch.full_like(ray_origins, self.near)
            t_end = torch.full_like(ray_origins, self.far)
        is_ray_valid = t_end > t_start
        if torch.any(is_ray_valid).item():
            t_start[~is_ray_valid] = t_start[is_ray_valid].min()
            t_end[~is_ray_valid] = t_start[is_ray_valid].max()

        if not self.disparity:
            depths = linspace(t_start, t_end, self.num_samples_per_ray)
            depths += (
                torch.rand_like(depths)
                * (t_end - t_start)
                / (self.num_samples_per_ray - 1)
            )
        else:
            step = 1.0 / self.num_samples_per_ray
            z_steps = torch.linspace(
                0, 1 - step, self.num_samples_per_ray, device=ray_origins.device
            )
            z_steps += torch.rand_like(z_steps) * step
            depths = 1 / (1 / self.near * (1 - z_steps) + 1 / self.far * z_steps)
            depths = depths[..., None, None, None]

        return ray_origins[None] + ray_directions[None] * depths


class PixelNeRF(torch.nn.Module):
    def __init__(
        self,
        num_samples_per_ray: int = 128,
        feature_dim: int = 64,
        interp: str = "bilinear",
        padding: str = "border",
        disparity: bool = False,
        near: float = 0.5,
        far: float = 10000.0,
        use_feats_std: bool = False,
        use_pos_emb: bool = False,
    ) -> None:
        super().__init__()
        # self.positional_encoder = Timestep(3)  # TODO
        self.num_samples_per_ray = num_samples_per_ray
        self.ray_generator = RayGenerator()
        self.ray_sampler = RaySampler(
            num_samples_per_ray, near=near, far=far, disparity=disparity
        )  # TODO
        self.interp = interp
        self.padding = padding

        self.positional_encoder = PositionalEncoding()

        # self.feature_aggregator = nn.Linear(128, 129)  # TODO
        self.use_feats_std = use_feats_std
        self.use_pos_emb = use_pos_emb
        d_in = feature_dim
        if use_feats_std:
            d_in += feature_dim
        if use_pos_emb:
            d_in += self.positional_encoder.d_out
        self.feature_aggregator = nn.Sequential(
            nn.Linear(d_in, 128),
            nn.ReLU(),
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, 129),
        )

        # self.decoder = nn.Linear(128, 131)  # TODO
        self.decoder = nn.Sequential(
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, 131),
        )

    def project(self, ray_samples, source_c2ws, source_instrincs):
        # TODO: implement
        # S for number of source cameras
        # ray_samples: [B, N, H * W, N_sample, 3]
        # source_c2ws: [B, S, 4, 4]
        # source_intrinsics: [B, S, 3, 3]
        # return [B, S, N, H * W, N_sample, 2]
        S = source_c2ws.shape[1]
        B = ray_samples.shape[0]
        N = ray_samples.shape[1]
        HW = ray_samples.shape[2]
        ray_samples = repeat(
            ray_samples,
            "B N HW N_sample C -> B S N HW N_sample C",
            S=source_c2ws.shape[1],
        )
        padding = torch.ones((B, S, N, HW, self.num_samples_per_ray, 1)).to(ray_samples)
        ray_samples_homo = torch.cat([ray_samples, padding], dim=-1)
        source_c2ws = repeat(source_c2ws, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
        source_instrincs = repeat(source_instrincs, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
        source_w2c = source_c2ws.inverse()
        projected_samples = einsum(
            source_w2c, ray_samples_homo, "... i j, ... j -> ... i"
        )[..., :3]
        # NOTE: assumes opengl convention
        projected_samples = -1 * projected_samples[..., :2] / projected_samples[..., 2:]
        # NOTE: intrinsics here are normalized by resolution
        fx = source_instrincs[..., 0, 0]
        fy = source_instrincs[..., 1, 1]
        cx = source_instrincs[..., 0, 2]
        cy = source_instrincs[..., 1, 2]
        x = projected_samples[..., 0] * fx + cx
        # negative sign here is caused by opengl, F.grid_sample is consistent with openCV convention
        y = -projected_samples[..., 1] * fy + cy

        return torch.stack([x, y], dim=-1)

    def forward(
        self, image_feats, source_c2ws, source_intrinsics, c2ws, intrinsics, render_size
    ):
        # image_feats: [B S C H W]
        B = c2ws.shape[0]
        T = c2ws.shape[1]
        ray_origins, ray_directions = self.ray_generator(
            c2ws.reshape(-1, 4, 4), intrinsics.reshape(-1, 3, 3), render_size
        )  # [B * N, H * W, 3]
        # breakpoint()

        ray_samples = self.ray_sampler(
            ray_origins, ray_directions
        )  # [N_sample, B * N, H * W, 3]
        ray_samples = rearrange(ray_samples, "Ns (B N) HW C -> B N HW Ns C", B=B)

        projected_samples = self.project(ray_samples, source_c2ws, source_intrinsics)
        # # debug
        # p = projected_samples[:, :, 0, :, 0, :]
        # p = p.reshape(p.shape[0] * p.shape[1], *p.shape[2:])

        # breakpoint()

        # image_feats = repeat(image_feats, "B S C H W -> (B S N) C H W", N=T)
        image_feats = rearrange(image_feats, "B S C H W -> (B S) C H W")
        projected_samples = rearrange(
            projected_samples, "B S N HW Ns xy -> (B S) (N Ns) HW xy"
        )
        # make sure the projected samples are in the range of [-1, 1], as required by F.grid_sample
        joint = F.grid_sample(
            image_feats,
            projected_samples * 2.0 - 1.0,
            padding_mode=self.padding,
            mode=self.interp,
            align_corners=True,
        )
        # print("image_feats", image_feats.max(), image_feats.min())
        # print("samples", projected_samples.max(), projected_samples.min())
        joint = rearrange(
            joint,
            "(B S) C (N Ns) HW -> B S N HW Ns C",
            B=B,
            Ns=self.num_samples_per_ray,
        )

        reduced = torch.mean(joint, dim=1)  # reduce on source dimension
        if self.use_feats_std:
            if not joint.shape[1] == 1:
                reduced = torch.cat((reduced, joint.std(dim=1)), dim=-1)
            else:
                reduced = torch.cat((reduced, torch.zeros_like(reduced)), dim=-1)

        if self.use_pos_emb:
            reduced = torch.cat((reduced, self.positional_encoder(ray_samples)), dim=-1)
        reduced = self.feature_aggregator(reduced)

        feats, weights = reduced.split([reduced.shape[-1] - 1, 1], dim=-1)
        # feats: [B, N, H * W, N_samples, N_c]
        # weights: [B, N, H * W, N_samples, 1]
        weights = F.softmax(weights, dim=-2)

        feats = torch.sum(feats * weights, dim=-2)

        rgb, feats = self.decoder(feats).split([3, 128], dim=-1)

        rgb = F.sigmoid(rgb)
        rgb = rearrange(rgb, "B N (H W) C -> B N C H W", H=render_size)
        feats = rearrange(feats, "B N (H W) C -> B N C H W", H=render_size)

        # print(rgb.max(), rgb.min())
        # print(feats.max(), feats.min())

        return rgb, feats