Spaces:
Runtime error
Runtime error
File size: 12,912 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd.profiler as profiler
import numpy as np
from einops import rearrange, repeat, einsum
from .math_utils import get_ray_limits_box, linspace
from ...modules.diffusionmodules.openaimodel import Timestep
class ImageEncoder(nn.Module):
def __init__(self, output_dim: int = 64) -> None:
super().__init__()
self.output_dim = output_dim
def forward(self, image):
return image
class PositionalEncoding(torch.nn.Module):
"""
Implement NeRF's positional encoding
"""
def __init__(self, num_freqs=6, d_in=3, freq_factor=np.pi, include_input=True):
super().__init__()
self.num_freqs = num_freqs
self.d_in = d_in
self.freqs = freq_factor * 2.0 ** torch.arange(0, num_freqs)
self.d_out = self.num_freqs * 2 * d_in
self.include_input = include_input
if include_input:
self.d_out += d_in
# f1 f1 f2 f2 ... to multiply x by
self.register_buffer(
"_freqs", torch.repeat_interleave(self.freqs, 2).view(1, -1, 1)
)
# 0 pi/2 0 pi/2 ... so that
# (sin(x + _phases[0]), sin(x + _phases[1]) ...) = (sin(x), cos(x)...)
_phases = torch.zeros(2 * self.num_freqs)
_phases[1::2] = np.pi * 0.5
self.register_buffer("_phases", _phases.view(1, -1, 1))
def forward(self, x):
"""
Apply positional encoding (new implementation)
:param x (batch, self.d_in)
:return (batch, self.d_out)
"""
with profiler.record_function("positional_enc"):
# embed = x.unsqueeze(1).repeat(1, self.num_freqs * 2, 1)
embed = repeat(x, "... C -> ... N C", N=self.num_freqs * 2)
embed = torch.sin(torch.addcmul(self._phases, embed, self._freqs))
embed = rearrange(embed, "... N C -> ... (N C)")
if self.include_input:
embed = torch.cat((x, embed), dim=-1)
return embed
class RayGenerator(torch.nn.Module):
"""
from camera pose and intrinsics to ray origins and directions
"""
def __init__(self):
super().__init__()
(
self.ray_origins_h,
self.ray_directions,
self.depths,
self.image_coords,
self.rendering_options,
) = (None, None, None, None, None)
def forward(self, cam2world_matrix, intrinsics, render_size):
"""
Create batches of rays and return origins and directions.
cam2world_matrix: (N, 4, 4)
intrinsics: (N, 3, 3)
render_size: int
ray_origins: (N, M, 3)
ray_dirs: (N, M, 2)
"""
N, M = cam2world_matrix.shape[0], render_size**2
cam_locs_world = cam2world_matrix[:, :3, 3]
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
uv = torch.stack(
torch.meshgrid(
torch.arange(
render_size, dtype=torch.float32, device=cam2world_matrix.device
),
torch.arange(
render_size, dtype=torch.float32, device=cam2world_matrix.device
),
indexing="ij",
)
)
uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
x_cam = uv[:, :, 0].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
y_cam = uv[:, :, 1].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
z_cam = torch.ones((N, M), device=cam2world_matrix.device)
x_lift = (
(
x_cam
- cx.unsqueeze(-1)
+ cy.unsqueeze(-1) * sk.unsqueeze(-1) / fy.unsqueeze(-1)
- sk.unsqueeze(-1) * y_cam / fy.unsqueeze(-1)
)
/ fx.unsqueeze(-1)
* z_cam
)
y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam
cam_rel_points = torch.stack(
(x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1
)
# NOTE: this should be named _blender2opencv
_opencv2blender = (
torch.tensor(
[
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
device=cam2world_matrix.device,
)
.unsqueeze(0)
.repeat(N, 1, 1)
)
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
world_rel_points = torch.bmm(
cam2world_matrix, cam_rel_points.permute(0, 2, 1)
).permute(0, 2, 1)[:, :, :3]
ray_dirs = world_rel_points - cam_locs_world[:, None, :]
ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)
ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)
return ray_origins, ray_dirs
class RaySampler(torch.nn.Module):
def __init__(
self,
num_samples_per_ray,
bbox_length=1.0,
near=0.5,
far=10000.0,
disparity=False,
):
super().__init__()
self.num_samples_per_ray = num_samples_per_ray
self.bbox_length = bbox_length
self.near = near
self.far = far
self.disparity = disparity
def forward(self, ray_origins, ray_directions):
if not self.disparity:
t_start, t_end = get_ray_limits_box(
ray_origins, ray_directions, 2 * self.bbox_length
)
else:
t_start = torch.full_like(ray_origins, self.near)
t_end = torch.full_like(ray_origins, self.far)
is_ray_valid = t_end > t_start
if torch.any(is_ray_valid).item():
t_start[~is_ray_valid] = t_start[is_ray_valid].min()
t_end[~is_ray_valid] = t_start[is_ray_valid].max()
if not self.disparity:
depths = linspace(t_start, t_end, self.num_samples_per_ray)
depths += (
torch.rand_like(depths)
* (t_end - t_start)
/ (self.num_samples_per_ray - 1)
)
else:
step = 1.0 / self.num_samples_per_ray
z_steps = torch.linspace(
0, 1 - step, self.num_samples_per_ray, device=ray_origins.device
)
z_steps += torch.rand_like(z_steps) * step
depths = 1 / (1 / self.near * (1 - z_steps) + 1 / self.far * z_steps)
depths = depths[..., None, None, None]
return ray_origins[None] + ray_directions[None] * depths
class PixelNeRF(torch.nn.Module):
def __init__(
self,
num_samples_per_ray: int = 128,
feature_dim: int = 64,
interp: str = "bilinear",
padding: str = "border",
disparity: bool = False,
near: float = 0.5,
far: float = 10000.0,
use_feats_std: bool = False,
use_pos_emb: bool = False,
) -> None:
super().__init__()
# self.positional_encoder = Timestep(3) # TODO
self.num_samples_per_ray = num_samples_per_ray
self.ray_generator = RayGenerator()
self.ray_sampler = RaySampler(
num_samples_per_ray, near=near, far=far, disparity=disparity
) # TODO
self.interp = interp
self.padding = padding
self.positional_encoder = PositionalEncoding()
# self.feature_aggregator = nn.Linear(128, 129) # TODO
self.use_feats_std = use_feats_std
self.use_pos_emb = use_pos_emb
d_in = feature_dim
if use_feats_std:
d_in += feature_dim
if use_pos_emb:
d_in += self.positional_encoder.d_out
self.feature_aggregator = nn.Sequential(
nn.Linear(d_in, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 129),
)
# self.decoder = nn.Linear(128, 131) # TODO
self.decoder = nn.Sequential(
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 131),
)
def project(self, ray_samples, source_c2ws, source_instrincs):
# TODO: implement
# S for number of source cameras
# ray_samples: [B, N, H * W, N_sample, 3]
# source_c2ws: [B, S, 4, 4]
# source_intrinsics: [B, S, 3, 3]
# return [B, S, N, H * W, N_sample, 2]
S = source_c2ws.shape[1]
B = ray_samples.shape[0]
N = ray_samples.shape[1]
HW = ray_samples.shape[2]
ray_samples = repeat(
ray_samples,
"B N HW N_sample C -> B S N HW N_sample C",
S=source_c2ws.shape[1],
)
padding = torch.ones((B, S, N, HW, self.num_samples_per_ray, 1)).to(ray_samples)
ray_samples_homo = torch.cat([ray_samples, padding], dim=-1)
source_c2ws = repeat(source_c2ws, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
source_instrincs = repeat(source_instrincs, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
source_w2c = source_c2ws.inverse()
projected_samples = einsum(
source_w2c, ray_samples_homo, "... i j, ... j -> ... i"
)[..., :3]
# NOTE: assumes opengl convention
projected_samples = -1 * projected_samples[..., :2] / projected_samples[..., 2:]
# NOTE: intrinsics here are normalized by resolution
fx = source_instrincs[..., 0, 0]
fy = source_instrincs[..., 1, 1]
cx = source_instrincs[..., 0, 2]
cy = source_instrincs[..., 1, 2]
x = projected_samples[..., 0] * fx + cx
# negative sign here is caused by opengl, F.grid_sample is consistent with openCV convention
y = -projected_samples[..., 1] * fy + cy
return torch.stack([x, y], dim=-1)
def forward(
self, image_feats, source_c2ws, source_intrinsics, c2ws, intrinsics, render_size
):
# image_feats: [B S C H W]
B = c2ws.shape[0]
T = c2ws.shape[1]
ray_origins, ray_directions = self.ray_generator(
c2ws.reshape(-1, 4, 4), intrinsics.reshape(-1, 3, 3), render_size
) # [B * N, H * W, 3]
# breakpoint()
ray_samples = self.ray_sampler(
ray_origins, ray_directions
) # [N_sample, B * N, H * W, 3]
ray_samples = rearrange(ray_samples, "Ns (B N) HW C -> B N HW Ns C", B=B)
projected_samples = self.project(ray_samples, source_c2ws, source_intrinsics)
# # debug
# p = projected_samples[:, :, 0, :, 0, :]
# p = p.reshape(p.shape[0] * p.shape[1], *p.shape[2:])
# breakpoint()
# image_feats = repeat(image_feats, "B S C H W -> (B S N) C H W", N=T)
image_feats = rearrange(image_feats, "B S C H W -> (B S) C H W")
projected_samples = rearrange(
projected_samples, "B S N HW Ns xy -> (B S) (N Ns) HW xy"
)
# make sure the projected samples are in the range of [-1, 1], as required by F.grid_sample
joint = F.grid_sample(
image_feats,
projected_samples * 2.0 - 1.0,
padding_mode=self.padding,
mode=self.interp,
align_corners=True,
)
# print("image_feats", image_feats.max(), image_feats.min())
# print("samples", projected_samples.max(), projected_samples.min())
joint = rearrange(
joint,
"(B S) C (N Ns) HW -> B S N HW Ns C",
B=B,
Ns=self.num_samples_per_ray,
)
reduced = torch.mean(joint, dim=1) # reduce on source dimension
if self.use_feats_std:
if not joint.shape[1] == 1:
reduced = torch.cat((reduced, joint.std(dim=1)), dim=-1)
else:
reduced = torch.cat((reduced, torch.zeros_like(reduced)), dim=-1)
if self.use_pos_emb:
reduced = torch.cat((reduced, self.positional_encoder(ray_samples)), dim=-1)
reduced = self.feature_aggregator(reduced)
feats, weights = reduced.split([reduced.shape[-1] - 1, 1], dim=-1)
# feats: [B, N, H * W, N_samples, N_c]
# weights: [B, N, H * W, N_samples, 1]
weights = F.softmax(weights, dim=-2)
feats = torch.sum(feats * weights, dim=-2)
rgb, feats = self.decoder(feats).split([3, 128], dim=-1)
rgb = F.sigmoid(rgb)
rgb = rearrange(rgb, "B N (H W) C -> B N C H W", H=render_size)
feats = rearrange(feats, "B N (H W) C -> B N C H W", H=render_size)
# print(rgb.max(), rgb.min())
# print(feats.max(), feats.min())
return rgb, feats
|