Spaces:
Runtime error
Runtime error
File size: 12,207 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import re
import shutil
import numpy as np
import cv2
import imageio
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap
import json
import torch
from utils.obj import write_obj
class SaverMixin:
@property
def save_dir(self):
return self.config.save_dir
def convert_data(self, data):
if isinstance(data, np.ndarray):
return data
elif isinstance(data, torch.Tensor):
return data.cpu().numpy()
elif isinstance(data, list):
return [self.convert_data(d) for d in data]
elif isinstance(data, dict):
return {k: self.convert_data(v) for k, v in data.items()}
else:
raise TypeError(
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
type(data),
)
def get_save_path(self, filename):
save_path = os.path.join(self.save_dir, filename)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
return save_path
DEFAULT_RGB_KWARGS = {"data_format": "CHW", "data_range": (0, 1)}
DEFAULT_UV_KWARGS = {
"data_format": "CHW",
"data_range": (0, 1),
"cmap": "checkerboard",
}
DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"}
def get_rgb_image_(self, img, data_format, data_range):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = ((img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0).astype(
np.uint8
)
imgs = [img[..., start : start + 3] for start in range(0, img.shape[-1], 3)]
imgs = [
(
img_
if img_.shape[-1] == 3
else np.concatenate(
[
img_,
np.zeros(
(img_.shape[0], img_.shape[1], 3 - img_.shape[2]),
dtype=img_.dtype,
),
],
axis=-1,
)
)
for img_ in imgs
]
img = np.concatenate(imgs, axis=1)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def save_rgb_image(
self,
filename,
img,
data_format=DEFAULT_RGB_KWARGS["data_format"],
data_range=DEFAULT_RGB_KWARGS["data_range"],
):
img = self.get_rgb_image_(img, data_format, data_range)
cv2.imwrite(self.get_save_path(filename), img)
def get_uv_image_(self, img, data_format, data_range, cmap):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in ["checkerboard", "color"]
if cmap == "checkerboard":
n_grid = 64
mask = (img * n_grid).astype(int)
mask = (mask[..., 0] + mask[..., 1]) % 2 == 0
img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
img[mask] = np.array([255, 0, 255], dtype=np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif cmap == "color":
img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
img_[..., 0] = (img[..., 0] * 255).astype(np.uint8)
img_[..., 1] = (img[..., 1] * 255).astype(np.uint8)
img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR)
img = img_
return img
def save_uv_image(
self,
filename,
img,
data_format=DEFAULT_UV_KWARGS["data_format"],
data_range=DEFAULT_UV_KWARGS["data_range"],
cmap=DEFAULT_UV_KWARGS["cmap"],
):
img = self.get_uv_image_(img, data_format, data_range, cmap)
cv2.imwrite(self.get_save_path(filename), img)
def get_grayscale_image_(self, img, data_range, cmap):
img = self.convert_data(img)
img = np.nan_to_num(img)
if data_range is None:
img = (img - img.min()) / (img.max() - img.min())
else:
img = img.clip(data_range[0], data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in [None, "jet", "magma"]
if cmap == None:
img = (img * 255.0).astype(np.uint8)
img = np.repeat(img[..., None], 3, axis=2)
elif cmap == "jet":
img = (img * 255.0).astype(np.uint8)
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
elif cmap == "magma":
img = 1.0 - img
base = cm.get_cmap("magma")
num_bins = 256
colormap = LinearSegmentedColormap.from_list(
f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins
)(np.linspace(0, 1, num_bins))[:, :3]
a = np.floor(img * 255.0)
b = (a + 1).clip(max=255.0)
f = img * 255.0 - a
a = a.astype(np.uint16).clip(0, 255)
b = b.astype(np.uint16).clip(0, 255)
img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None]
img = (img * 255.0).astype(np.uint8)
return img
def save_grayscale_image(
self,
filename,
img,
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
):
img = self.get_grayscale_image_(img, data_range, cmap)
cv2.imwrite(self.get_save_path(filename), img)
def get_image_grid_(self, imgs):
if isinstance(imgs[0], list):
return np.concatenate([self.get_image_grid_(row) for row in imgs], axis=0)
cols = []
for col in imgs:
assert col["type"] in ["rgb", "uv", "grayscale"]
if col["type"] == "rgb":
rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy()
rgb_kwargs.update(col["kwargs"])
cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs))
elif col["type"] == "uv":
uv_kwargs = self.DEFAULT_UV_KWARGS.copy()
uv_kwargs.update(col["kwargs"])
cols.append(self.get_uv_image_(col["img"], **uv_kwargs))
elif col["type"] == "grayscale":
grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy()
grayscale_kwargs.update(col["kwargs"])
cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs))
return np.concatenate(cols, axis=1)
def save_image_grid(self, filename, imgs):
img = self.get_image_grid_(imgs)
cv2.imwrite(self.get_save_path(filename), img)
def save_image(self, filename, img):
img = self.convert_data(img)
assert img.dtype == np.uint8
if img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
cv2.imwrite(self.get_save_path(filename), img)
def save_cubemap(self, filename, img, data_range=(0, 1)):
img = self.convert_data(img)
assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2]
imgs_full = []
for start in range(0, img.shape[-1], 3):
img_ = img[..., start : start + 3]
img_ = np.stack(
[
self.get_rgb_image_(img_[i], "HWC", data_range)
for i in range(img_.shape[0])
],
axis=0,
)
size = img_.shape[1]
placeholder = np.zeros((size, size, 3), dtype=np.float32)
img_full = np.concatenate(
[
np.concatenate(
[placeholder, img_[2], placeholder, placeholder], axis=1
),
np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1),
np.concatenate(
[placeholder, img_[3], placeholder, placeholder], axis=1
),
],
axis=0,
)
img_full = cv2.cvtColor(img_full, cv2.COLOR_RGB2BGR)
imgs_full.append(img_full)
imgs_full = np.concatenate(imgs_full, axis=1)
cv2.imwrite(self.get_save_path(filename), imgs_full)
def save_data(self, filename, data):
data = self.convert_data(data)
if isinstance(data, dict):
if not filename.endswith(".npz"):
filename += ".npz"
np.savez(self.get_save_path(filename), **data)
else:
if not filename.endswith(".npy"):
filename += ".npy"
np.save(self.get_save_path(filename), data)
def save_state_dict(self, filename, data):
torch.save(data, self.get_save_path(filename))
def save_img_sequence(self, filename, img_dir, matcher, save_format="gif", fps=30):
assert save_format in ["gif", "mp4"]
if not filename.endswith(save_format):
filename += f".{save_format}"
matcher = re.compile(matcher)
img_dir = os.path.join(self.save_dir, img_dir)
imgs = []
for f in os.listdir(img_dir):
if matcher.search(f):
imgs.append(f)
imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0]))
imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs]
if save_format == "gif":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(
self.get_save_path(filename), imgs, fps=fps, palettesize=256
)
elif save_format == "mp4":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(self.get_save_path(filename), imgs, fps=fps)
def save_mesh(
self,
filename,
v_pos,
t_pos_idx,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
ortho_scale=1,
):
v_pos, t_pos_idx = self.convert_data(v_pos), self.convert_data(t_pos_idx)
if v_rgb is not None:
v_rgb = self.convert_data(v_rgb)
if ortho_scale is not None:
print("ortho scale is: ", ortho_scale)
v_pos = v_pos * ortho_scale * 0.5
# change to front-facing
v_pos_copy = np.zeros_like(v_pos)
# v_pos_copy[:, 0] = v_pos[:, 0]
# v_pos_copy[:, 1] = v_pos[:, 2]
# v_pos_copy[:, 2] = v_pos[:, 1]
v_pos_copy[:, 0] = v_pos[:, 0]
v_pos_copy[:, 1] = v_pos[:, 1]
v_pos_copy[:, 2] = v_pos[:, 2]
import trimesh
mesh = trimesh.Trimesh(
vertices=v_pos_copy, faces=t_pos_idx, vertex_colors=v_rgb
)
trimesh.repair.fix_inversion(mesh)
mesh.export(self.get_save_path(filename))
# mesh.export(self.get_save_path(filename.replace(".obj", "-meshlab.obj")))
# v_pos_copy[:, 0] = v_pos[:, 1] * -1
# v_pos_copy[:, 1] = v_pos[:, 0]
# v_pos_copy[:, 2] = v_pos[:, 2]
# mesh = trimesh.Trimesh(
# vertices=v_pos_copy,
# faces=t_pos_idx,
# vertex_colors=v_rgb
# )
# mesh.export(self.get_save_path(filename.replace(".obj", "-blender.obj")))
# v_pos_copy[:, 0] = v_pos[:, 0]
# v_pos_copy[:, 1] = v_pos[:, 1] * -1
# v_pos_copy[:, 2] = v_pos[:, 2] * -1
# mesh = trimesh.Trimesh(
# vertices=v_pos_copy,
# faces=t_pos_idx,
# vertex_colors=v_rgb
# )
# mesh.export(self.get_save_path(filename.replace(".obj", "-opengl.obj")))
def save_file(self, filename, src_path):
shutil.copyfile(src_path, self.get_save_path(filename))
def save_json(self, filename, payload):
with open(self.get_save_path(filename), "w") as f:
f.write(json.dumps(payload))
|