File size: 12,888 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#     * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
#       its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)

import os
import collections
import numpy as np
import struct


CameraModel = collections.namedtuple(
    "CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple(
    "Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple(
    "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
Point3D = collections.namedtuple(
    "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])

class Image(BaseImage):
    def qvec2rotmat(self):
        return qvec2rotmat(self.qvec)


CAMERA_MODELS = {
    CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
    CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
    CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
    CameraModel(model_id=3, model_name="RADIAL", num_params=5),
    CameraModel(model_id=4, model_name="OPENCV", num_params=8),
    CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
    CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
    CameraModel(model_id=7, model_name="FOV", num_params=5),
    CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
    CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
    CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) \
                         for camera_model in CAMERA_MODELS])


def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
    """Read and unpack the next bytes from a binary file.
    :param fid:
    :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
    :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
    :param endian_character: Any of {@, =, <, >, !}
    :return: Tuple of read and unpacked values.
    """
    data = fid.read(num_bytes)
    return struct.unpack(endian_character + format_char_sequence, data)


def read_cameras_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasText(const std::string& path)
        void Reconstruction::ReadCamerasText(const std::string& path)
    """
    cameras = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                camera_id = int(elems[0])
                model = elems[1]
                width = int(elems[2])
                height = int(elems[3])
                params = np.array(tuple(map(float, elems[4:])))
                cameras[camera_id] = Camera(id=camera_id, model=model,
                                            width=width, height=height,
                                            params=params)
    return cameras


def read_cameras_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasBinary(const std::string& path)
        void Reconstruction::ReadCamerasBinary(const std::string& path)
    """
    cameras = {}
    with open(path_to_model_file, "rb") as fid:
        num_cameras = read_next_bytes(fid, 8, "Q")[0]
        for camera_line_index in range(num_cameras):
            camera_properties = read_next_bytes(
                fid, num_bytes=24, format_char_sequence="iiQQ")
            camera_id = camera_properties[0]
            model_id = camera_properties[1]
            model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
            width = camera_properties[2]
            height = camera_properties[3]
            num_params = CAMERA_MODEL_IDS[model_id].num_params
            params = read_next_bytes(fid, num_bytes=8*num_params,
                                     format_char_sequence="d"*num_params)
            cameras[camera_id] = Camera(id=camera_id,
                                        model=model_name,
                                        width=width,
                                        height=height,
                                        params=np.array(params))
        assert len(cameras) == num_cameras
    return cameras


def read_images_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesText(const std::string& path)
        void Reconstruction::WriteImagesText(const std::string& path)
    """
    images = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                image_id = int(elems[0])
                qvec = np.array(tuple(map(float, elems[1:5])))
                tvec = np.array(tuple(map(float, elems[5:8])))
                camera_id = int(elems[8])
                image_name = elems[9]
                elems = fid.readline().split()
                xys = np.column_stack([tuple(map(float, elems[0::3])),
                                       tuple(map(float, elems[1::3]))])
                point3D_ids = np.array(tuple(map(int, elems[2::3])))
                images[image_id] = Image(
                    id=image_id, qvec=qvec, tvec=tvec,
                    camera_id=camera_id, name=image_name,
                    xys=xys, point3D_ids=point3D_ids)
    return images


def read_images_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesBinary(const std::string& path)
        void Reconstruction::WriteImagesBinary(const std::string& path)
    """
    images = {}
    with open(path_to_model_file, "rb") as fid:
        num_reg_images = read_next_bytes(fid, 8, "Q")[0]
        for image_index in range(num_reg_images):
            binary_image_properties = read_next_bytes(
                fid, num_bytes=64, format_char_sequence="idddddddi")
            image_id = binary_image_properties[0]
            qvec = np.array(binary_image_properties[1:5])
            tvec = np.array(binary_image_properties[5:8])
            camera_id = binary_image_properties[8]
            image_name = ""
            current_char = read_next_bytes(fid, 1, "c")[0]
            while current_char != b"\x00":   # look for the ASCII 0 entry
                image_name += current_char.decode("utf-8")
                current_char = read_next_bytes(fid, 1, "c")[0]
            num_points2D = read_next_bytes(fid, num_bytes=8,
                                           format_char_sequence="Q")[0]
            x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
                                       format_char_sequence="ddq"*num_points2D)
            xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
                                   tuple(map(float, x_y_id_s[1::3]))])
            point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
            images[image_id] = Image(
                id=image_id, qvec=qvec, tvec=tvec,
                camera_id=camera_id, name=image_name,
                xys=xys, point3D_ids=point3D_ids)
    return images


def read_points3D_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DText(const std::string& path)
        void Reconstruction::WritePoints3DText(const std::string& path)
    """
    points3D = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                point3D_id = int(elems[0])
                xyz = np.array(tuple(map(float, elems[1:4])))
                rgb = np.array(tuple(map(int, elems[4:7])))
                error = float(elems[7])
                image_ids = np.array(tuple(map(int, elems[8::2])))
                point2D_idxs = np.array(tuple(map(int, elems[9::2])))
                points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
                                               error=error, image_ids=image_ids,
                                               point2D_idxs=point2D_idxs)
    return points3D


def read_points3d_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DBinary(const std::string& path)
        void Reconstruction::WritePoints3DBinary(const std::string& path)
    """
    points3D = {}
    with open(path_to_model_file, "rb") as fid:
        num_points = read_next_bytes(fid, 8, "Q")[0]
        for point_line_index in range(num_points):
            binary_point_line_properties = read_next_bytes(
                fid, num_bytes=43, format_char_sequence="QdddBBBd")
            point3D_id = binary_point_line_properties[0]
            xyz = np.array(binary_point_line_properties[1:4])
            rgb = np.array(binary_point_line_properties[4:7])
            error = np.array(binary_point_line_properties[7])
            track_length = read_next_bytes(
                fid, num_bytes=8, format_char_sequence="Q")[0]
            track_elems = read_next_bytes(
                fid, num_bytes=8*track_length,
                format_char_sequence="ii"*track_length)
            image_ids = np.array(tuple(map(int, track_elems[0::2])))
            point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
            points3D[point3D_id] = Point3D(
                id=point3D_id, xyz=xyz, rgb=rgb,
                error=error, image_ids=image_ids,
                point2D_idxs=point2D_idxs)
    return points3D


def read_model(path, ext):
    if ext == ".txt":
        cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
        images = read_images_text(os.path.join(path, "images" + ext))
        points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
    else:
        cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
        images = read_images_binary(os.path.join(path, "images" + ext))
        points3D = read_points3d_binary(os.path.join(path, "points3D") + ext)
    return cameras, images, points3D


def qvec2rotmat(qvec):
    return np.array([
        [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
         2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
         2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
        [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
         1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
         2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
        [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
         2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
         1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])


def rotmat2qvec(R):
    Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
    K = np.array([
        [Rxx - Ryy - Rzz, 0, 0, 0],
        [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
        [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
        [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
    eigvals, eigvecs = np.linalg.eigh(K)
    qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
    if qvec[0] < 0:
        qvec *= -1
    return qvec