Spaces:
Runtime error
Runtime error
File size: 4,206 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import math
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
def render(
viewpoint_camera,
pc: GaussianModel,
pipe,
bg_color: torch.Tensor,
scaling_modifier=1.0,
override_color=None,
):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = (
torch.zeros_like(
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
)
+ 0
)
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=pc.active_sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=pipe.debug,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if override_color is None:
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(
-1, 3, (pc.max_sh_degree + 1) ** 2
)
dir_pp = pc.get_xyz - viewpoint_camera.camera_center.repeat(
pc.get_features.shape[0], 1
)
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
shs = pc.get_features
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii, depth, alpha = rasterizer(
means3D=means3D,
means2D=means2D,
shs=shs,
colors_precomp=colors_precomp,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=cov3D_precomp,
)
# rendered_image, radii = rasterizer(
# means3D = means3D,
# means2D = means2D,
# shs = shs,
# colors_precomp = colors_precomp,
# opacities = opacity,
# scales = scales,
# rotations = rotations,
# cov3D_precomp = cov3D_precomp)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {
"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter": radii > 0,
"radii": radii,
"depth": depth,
"alpha": alpha,
}
|